viernes, 21 de agosto de 2009
viernes, 14 de agosto de 2009
LA USB
Una memoria USB (de Universal Serial Bus, en inglés pendrive, USB flash drive) es un pequeño dispositivo de almacenamiento que utiliza memoria flash para guardar la información que puede requerir o no baterías (pilas), en los últimos modelos la batería no es requerida, la batería era utilizada por
los primeros modelos. Estas memorias son resistentes a los rasguños (externos) al polvo, y algunos al agua –que han afectado a las formas previas de almacenamiento portátil-, como los disquetes, discos compactos y los DVD.
Estas memorias se han convertido en el sistema de almacenamiento y transporte personal de datos más utilizado, desplazando en este uso a los tradicionales disquetes, y a los CD. Se pueden encontrar en el mercado fácilmente memorias de 1, 2, 4, 8, 16, 32, 64 y hasta 128 GB (siendo impráctico a los 64gb por su costo) o más. Esto supone, como mínimo, el equivalente a 180 CD de 700MB o 91.000 disquetes de 1.44 MB aproximadamente. Su gran popularidad le ha supuesto infinidad de denominaciones populares relacionadas con su pequeño tamaño y las diversas formas de presentación, sin que ninguna haya podido destacar entre todas ellas. El calificativo USB o el propio contexto permite identificar fácilmente el dispositivo informático al que se refieren.
Los sistemas operativos actuales pueden leer y escribir en las memorias sin más que enchufarlas a un conector USB del equipo encendido, recibiendo la energía de alimentación a través del propio conector que cuenta con 5 voltios. En equipos algo antiguos (como por ejemplo los equipados con Windows 98) se necesita instalar un controlador de dispositivo (driver) proporcionado por el fabricante. Los sistemas GNU/Linux también tienen soporte para dispositivos de almacenamiento USB desde el kernel 2.4.

Estas memorias se han convertido en el sistema de almacenamiento y transporte personal de datos más utilizado, desplazando en este uso a los tradicionales disquetes, y a los CD. Se pueden encontrar en el mercado fácilmente memorias de 1, 2, 4, 8, 16, 32, 64 y hasta 128 GB (siendo impráctico a los 64gb por su costo) o más. Esto supone, como mínimo, el equivalente a 180 CD de 700MB o 91.000 disquetes de 1.44 MB aproximadamente. Su gran popularidad le ha supuesto infinidad de denominaciones populares relacionadas con su pequeño tamaño y las diversas formas de presentación, sin que ninguna haya podido destacar entre todas ellas. El calificativo USB o el propio contexto permite identificar fácilmente el dispositivo informático al que se refieren.
Los sistemas operativos actuales pueden leer y escribir en las memorias sin más que enchufarlas a un conector USB del equipo encendido, recibiendo la energía de alimentación a través del propio conector que cuenta con 5 voltios. En equipos algo antiguos (como por ejemplo los equipados con Windows 98) se necesita instalar un controlador de dispositivo (driver) proporcionado por el fabricante. Los sistemas GNU/Linux también tienen soporte para dispositivos de almacenamiento USB desde el kernel 2.4.
EL JOYSTICK
Los joystick se utilizaban originalmente para controlar los alerones y elevadores de una aeronave. El nombre joystick parece deberse al piloto francés de principios del siglo XX Robert Esnault-Pelterie.[1] También se atribuye a los pilotos Robert Loraine y James Henry Joyce. El joystick en sí mismo estaba presente en los primeros aviones, aunque su origen mecánico sigue siendo
incierto.[2]
El primer joystick eléctrico de dos ejes probablemente fue inventado en 1944 en Alemania. Se desarrolló para controlar la bomba guiada Henschel Hs 293. El joystick era utilizado por el operador para dirigir el misil hacia su blanco por control de radio. El joystick constaba de interruptores encendido/apagado en lugar de sensores analógicos, por lo que se le podría considerar el primer joystick digital. La señal se transmitía al misil mediante un cable fino.
Esta idea fue aprovechada por los científicos del Heeresversuchsanstalt en Peenemünde. Una parte del equipo del programa alemán de cohetes desarrollaba el misil Wasserfall, sucesor del cohete V-2, el primer misil tierra-aire diseñado para derribar aviones enemigos. El equipo de desarrollo del Wasserfall modificó el sistema de control para convertir la señal eléctrica a señales de radio que se transmitían al misil, eliminando la necesidad del cable.
Los primeros joystick de máquina recreativa de salón, o máquina arcade, eran joysticks digitales porque el estándar de conexión de las placas de circuitos de estas máquinas mayoritariamente usado, llamado Jamma, que conecta a los diferentes periféricos de la carcasa (monitor, botonera, ranura para monedas...) solo detecta pulsaciones abierto/cerrado, por lo cual los joystick deben ser de este tipo. Al evolucionar las recreativas a la par que los ordenadores y videoconsolas comenzaron a aparecer controles de tipo analógico.

El primer joystick eléctrico de dos ejes probablemente fue inventado en 1944 en Alemania. Se desarrolló para controlar la bomba guiada Henschel Hs 293. El joystick era utilizado por el operador para dirigir el misil hacia su blanco por control de radio. El joystick constaba de interruptores encendido/apagado en lugar de sensores analógicos, por lo que se le podría considerar el primer joystick digital. La señal se transmitía al misil mediante un cable fino.
Esta idea fue aprovechada por los científicos del Heeresversuchsanstalt en Peenemünde. Una parte del equipo del programa alemán de cohetes desarrollaba el misil Wasserfall, sucesor del cohete V-2, el primer misil tierra-aire diseñado para derribar aviones enemigos. El equipo de desarrollo del Wasserfall modificó el sistema de control para convertir la señal eléctrica a señales de radio que se transmitían al misil, eliminando la necesidad del cable.
Los primeros joystick de máquina recreativa de salón, o máquina arcade, eran joysticks digitales porque el estándar de conexión de las placas de circuitos de estas máquinas mayoritariamente usado, llamado Jamma, que conecta a los diferentes periféricos de la carcasa (monitor, botonera, ranura para monedas...) solo detecta pulsaciones abierto/cerrado, por lo cual los joystick deben ser de este tipo. Al evolucionar las recreativas a la par que los ordenadores y videoconsolas comenzaron a aparecer controles de tipo analógico.
LA WEB CAM

En 1991 una rebelión se levantaba en el departamento de computación de la Universidad de Cambridge, el problema: solo estaba permitido hacer café en una habitación muy apartada y muchos se servían sin volver a llenar la cafetera; la solución: configurar una cámara que transmitiera en vivo a través de la red universitaria mostrando dicha máquina; el resultado: la primer webcam de la historia.
Sería difícil pensar que un instrumento que hoy en día ha revolucionado la comunicación a través de Internet y la seguridad a distancia haya nacido por un simple pleito en un departamento de computación universitario. Pero en un ejemplo magnífico de como la necesidad puede llevar el ingenio y la creatividad a niveles muy altos, Quentin Stafford-Fraser y Paul Jardetzky crearon la primer webcam de la historia para evitar los pleitos en el edificio en el cual trabajaban. No era para menos, ya que la cafetera -y todos sabemos que el café es el combustible de los programadores- se encontraba en un departamento muy alejado. Esto llevaba a que muchos de los programadores fueran a la habitación para encontrarse con que un despreocupado colega se había servido sin rellenar con agua la máquina que hacía el café. La solución fue simple pero a la vez ingeniosa, Quentin y Paul programaron un cliente y un servidor llamado XCoffee que transmitía en vivo una imagen de 128×128 px de la cafetera a través de la red universitaria. De esta manera, al saber que eran vistos, todos la rellenaban y además se podía ver con anterioridad si había café preparado antes de ir a buscarlo. Un año más tarde, utilizando el código de XCoffee renombrado a XCam, salía a la venta la primer webcam comercial.
Sería difícil pensar que un instrumento que hoy en día ha revolucionado la comunicación a través de Internet y la seguridad a distancia haya nacido por un simple pleito en un departamento de computación universitario. Pero en un ejemplo magnífico de como la necesidad puede llevar el ingenio y la creatividad a niveles muy altos, Quentin Stafford-Fraser y Paul Jardetzky crearon la primer webcam de la historia para evitar los pleitos en el edificio en el cual trabajaban. No era para menos, ya que la cafetera -y todos sabemos que el café es el combustible de los programadores- se encontraba en un departamento muy alejado. Esto llevaba a que muchos de los programadores fueran a la habitación para encontrarse con que un despreocupado colega se había servido sin rellenar con agua la máquina que hacía el café. La solución fue simple pero a la vez ingeniosa, Quentin y Paul programaron un cliente y un servidor llamado XCoffee que transmitía en vivo una imagen de 128×128 px de la cafetera a través de la red universitaria. De esta manera, al saber que eran vistos, todos la rellenaban y además se podía ver con anterioridad si había café preparado antes de ir a buscarlo. Un año más tarde, utilizando el código de XCoffee renombrado a XCam, salía a la venta la primer webcam comercial.
ORDENADOR PORTATIL

Aunque se discute su veracidad, el siguiente ordenador portátil que existió fue creado en 1983 por “Gavilan Computers”. Este portátil tenía de 64 a 128 megabytes de memoria, un ratón e incluso una impresora portátil. Su peso, sin la impresora, era algo mayor que los actuales.
Gavilan fracaso tiempo después por problemas de incompatibilidad con otros ordenadores. El portátil de Gavilan usaba su propio sistema operativo.
“Apple Computers” introdujo el modelo “Apple IIc” en 1984, pero no era mucho mejor que lo que había producido Gavilan un año antes. En punto favorable era que incluía la función opcional de LCD lo cual impactó en posteriores equipos.
Finalmente en 1986 un portátil real fue creado por IBM el cual lo llamó PC de IBM convertible. Decimos “real” porque al contrario de otros, a este portátil no se le tenía que hacer una configuración inicial en cada sitio. También poseía dos disqueteras de 3.5 pulgadas y espacio para un módem interno. En este “convertible” podíamos encontrar una pantalla LCD y algunas aplicaciones básicas que los usuarios podían usar para crear documentos de texto, y tomar notas.
Lo mas “curioso” del portátil de IBM era que su precio rondaba los 3500 dólares de aquella época! Hoy en día pagar ese precio por un portátil moderno está fuera de toda consideración, afortunadamente :)
Desde los años ochenta, muchos fabricantes están produciendo y desarrollando nuevos equipos cada vez más rápidos y potentes dejando en el olvido a sus predecesores. Y según avanza la tecnología, los precios se vuelven más competitivos hasta el punto de que cualquier persona puede disponer de un ordenador portátil.
Gavilan fracaso tiempo después por problemas de incompatibilidad con otros ordenadores. El portátil de Gavilan usaba su propio sistema operativo.
“Apple Computers” introdujo el modelo “Apple IIc” en 1984, pero no era mucho mejor que lo que había producido Gavilan un año antes. En punto favorable era que incluía la función opcional de LCD lo cual impactó en posteriores equipos.
Finalmente en 1986 un portátil real fue creado por IBM el cual lo llamó PC de IBM convertible. Decimos “real” porque al contrario de otros, a este portátil no se le tenía que hacer una configuración inicial en cada sitio. También poseía dos disqueteras de 3.5 pulgadas y espacio para un módem interno. En este “convertible” podíamos encontrar una pantalla LCD y algunas aplicaciones básicas que los usuarios podían usar para crear documentos de texto, y tomar notas.

Lo mas “curioso” del portátil de IBM era que su precio rondaba los 3500 dólares de aquella época! Hoy en día pagar ese precio por un portátil moderno está fuera de toda consideración, afortunadamente :)
Desde los años ochenta, muchos fabricantes están produciendo y desarrollando nuevos equipos cada vez más rápidos y potentes dejando en el olvido a sus predecesores. Y según avanza la tecnología, los precios se vuelven más competitivos hasta el punto de que cualquier persona puede disponer de un ordenador portátil.
LA BIOS
El Sistema Básico de Entrada/Salida o BIOS (Basic Input-Output System ) es un código de software que localiza y carga el sistema operativo en la RAM; es un software muy básico instalado en la placa base que permite que ésta cumpla su cometido. Proporc
iona la comunicación de bajo nivel, el funcionamiento y configuración del hardware del sistema que, como mínimo, maneja el teclado y proporciona salida básica (emitiendo pitidos normalizados por el altavoz de la computadora si se producen fallos) durante el arranque. El BIOS usualmente está escrito en lenguaje ensamblador. El primer término BIOS apareció en el sistema operativo CP/M, y describe la parte de CP/M que se ejecutaba durante el arranque y que iba unida directamente al hardware (las máquinas de CP/M usualmente tenían un simple cargador arrancable en la ROM, y nada más). La mayoría de las versiones de MS-DOS tienen un archivo llamado "IBMBIO.COM" o "IO.SYS" que es análogo al CP/M BIOS.
El BIOS (Basic Input-Output System) es un sistema básico de entrada/salida que normalmente pasa inadvertido para el usuario final de computadoras. Se encarga de encontrar el sistema operativo y cargarlo en memoria RAM. Posee un componente de hardware y otro de software, este último brinda una interfase generalmente de texto que permite configurar varias opciones del hardware instalado en la PC, como por ejemplo el reloj, o desde qué dispositivos de almacenamiento iniciará el sistema operativo (Windows, GNU/Linux, Mac OS X, etc.).
El BIOS gestiona al menos el teclado de la PC, proporcionando incluso una salida bastante básica en forma de sonidos por el parlante incorporado al gabinete cuando hay algún error, como por ejemplo un dispositivo que falla o debería ser conectado. Estos mensajes de error son utilizados por los técnicos para encontrar soluciones al momento de armar o reparar un equipo. Basic Input/Output System - Sistema básico de entrada/salida de datos). Programa que reside en la memoria EPROM (Ver Memoria BIOS no-volátil). Es un programa tipo firmware. La BIOS es una parte esencial del hardware que es totalmente configurable y es donde se controlan los procesos del flujo de información en el bus del ordenador, entre el sistema operativo y los demás periféricos. También incluye la configuración de aspectos importantísimos de la máquina.

El BIOS (Basic Input-Output System) es un sistema básico de entrada/salida que normalmente pasa inadvertido para el usuario final de computadoras. Se encarga de encontrar el sistema operativo y cargarlo en memoria RAM. Posee un componente de hardware y otro de software, este último brinda una interfase generalmente de texto que permite configurar varias opciones del hardware instalado en la PC, como por ejemplo el reloj, o desde qué dispositivos de almacenamiento iniciará el sistema operativo (Windows, GNU/Linux, Mac OS X, etc.).
El BIOS gestiona al menos el teclado de la PC, proporcionando incluso una salida bastante básica en forma de sonidos por el parlante incorporado al gabinete cuando hay algún error, como por ejemplo un dispositivo que falla o debería ser conectado. Estos mensajes de error son utilizados por los técnicos para encontrar soluciones al momento de armar o reparar un equipo. Basic Input/Output System - Sistema básico de entrada/salida de datos). Programa que reside en la memoria EPROM (Ver Memoria BIOS no-volátil). Es un programa tipo firmware. La BIOS es una parte esencial del hardware que es totalmente configurable y es donde se controlan los procesos del flujo de información en el bus del ordenador, entre el sistema operativo y los demás periféricos. También incluye la configuración de aspectos importantísimos de la máquina.
LA UNIDAD DE CD

El disco compacto (conocido popularmente como CD, por las siglas en inglés de Compact Disc) es un soporte digital óptico utilizado para almacenar cualquier tipo de información (audio, fotos, video, documentos y otros datos). En español o castellano, se puede escribir «cedé», aunque en gran parte de Latinoamérica se pronuncia «sidí» (en inglés). La Real Academia Española (RAE) también acepta «cederrón» [1] (CD-ROM). Hoy en día, sigue siendo el medio físico preferido para la distribución de audio.
Los CD estándar tienen un diámetro de 12 centímetros y pueden almacenar hasta 80 minutos de audio (ó 700 MB de datos). Los MiniCD tienen 8 cm. y son usados para la dist
ribución de sencillos y de controladores guardando hasta 24 minutos de audio o 214 MB de datos.
Esta tecnología fue más tarde expandida y adaptada para el almacenamiento de datos (CD-ROM), de video (VCD y SVCD), la grabación doméstica (CD-R y CD-RW) y el almacenamiento de datos mixtos (CD-i, Photo CD y CD EXTRA.
El disco compacto sigue gozando de popularidad en el mundo actual. Para el año 2007, se han vendido 200 millones de CD en el mundo.
Los CD estándar tienen un diámetro de 12 centímetros y pueden almacenar hasta 80 minutos de audio (ó 700 MB de datos). Los MiniCD tienen 8 cm. y son usados para la dist

Esta tecnología fue más tarde expandida y adaptada para el almacenamiento de datos (CD-ROM), de video (VCD y SVCD), la grabación doméstica (CD-R y CD-RW) y el almacenamiento de datos mixtos (CD-i, Photo CD y CD EXTRA.
El disco compacto sigue gozando de popularidad en el mundo actual. Para el año 2007, se han vendido 200 millones de CD en el mundo.
EL DISQUETE
Un disquete o disco flexible (en inglés floppy disk o diskette) es un medio o soporte de almacenamiento de datos formado por una pieza circular de material magnético, fina y flexible (de ahí su denominación) encerrada en una cubierta de plástico cuadrada o rectangular.
Los disquetes s
e leen y se escriben mediante un dispositivo llamado disquetera (o FDD, del inglés Floppy Disk Drive). En algunos casos es un disco menor que el CD (en tamaño físico pero no en capacidad de almacenamiento de datos). La disquetera es el dispositivo o unidad lectora/grabadora de disquetes, y ayuda a introducirlo para guardar la información.
Este tipo de dispositivo de almacenamiento es vulnerable a la suciedad y los campos magnéticos externos, por lo que, en muchos casos, deja de funcionar.
Los disquetes s

Este tipo de dispositivo de almacenamiento es vulnerable a la suciedad y los campos magnéticos externos, por lo que, en muchos casos, deja de funcionar.
LA BOARD
Las tarjetas madre necesitan tener dimensiones compatibles con los gabinetes que las contienen, de manera que desde los primeros computadores personales, se han establecido características mecánicas, llamadas factor de forma. Definen la distribución de diversos componentes y las dimensiones físicas como por ejemplo el largo y ancho de la tarjeta, la posición de agujeros de sujeción y las características de los conectores.
A continuación se describen los tipos de placas más usuales
XT: Es el formato de la placa base de la PC de IBM modelo 5160, lanzada en 1983 con las misma. En este factor de forma se definió un tamaño exactamente igual al de una hoja de papel tamaño carta y un único conector externo para el teclado.
AT: Uno de los formatos mas grandes de toda la historia del PC (305 × 279–330 mm), definió un conector de potencia formado por dos partes. Fue usado de manera extensa de 1985 a 1995.
ATX: Creado por un grupo liderado por Intel en 1995 introdujo las conexiones exteriores en la forma de un panel I/O y definió un conector de 20 pines para la energía. Se usa en la actualidad en la forma de algunas variantes, que incluyen conectores de energía extra o reducciones en el tamaño.
Formato propietario: Durante la existencia del PC, mucha marcas han intentado mantener un esquema cerrado de hardware, fabricando tarjetas madre incompatibles físicamente con los factores de forma con dimensiones, distribución de elementos o conectores que son atípicos. Entre las marcas mas persistentes esta Dell que rara vez fabrica equipos diseñados con factores de forma de la industria.

Las tarjetas madre necesitan tener dimensiones compatibles con los gabinetes que las contienen, de manera que desde los primeros computadores personales, se han establecido características mecánicas, llamadas factor de forma. Definen la distribución de diversos componentes y las dimensiones físicas como por ejemplo el largo y ancho de la tarjeta, la posición de agujeros de sujeción y las características de los conectores.
A continuación se describen los tipos de placas más usuales
XT: Es el formato de la placa base de la PC de IBM modelo 5160, lanzada en 1983 con las misma. En este factor de forma se definió un tamaño exactamente igual al de una hoja de papel tamaño carta y un único conector externo para el teclado.
AT: Uno de los formatos mas grandes de toda la historia del PC (305 × 279–330 mm), definió un conector de potencia formado por dos partes. Fue usado de manera extensa de 1985 a 1995.
ATX: Creado por un grupo liderado por Intel en 1995 introdujo las conexiones exteriores en la forma de un panel I/O y definió un conector de 20 pines para la energía. Se usa en la actualidad en la forma de algunas variantes, que incluyen conectores de energía extra o reducciones en el tamaño.
Formato propietario: Durante la existencia del PC, mucha marcas han intentado mantener un esquema cerrado de hardware, fabricando tarjetas madre incompatibles físicamente con los factores de forma con dimensiones, distribución de elementos o conectores que son atípicos. Entre las marcas mas persistentes esta Dell que rara vez fabrica equipos diseñados con factores de forma de la industria.

jueves, 13 de agosto de 2009
MEMORIA RAM
Como veis, su visión del crecimiento desorbitado de la informática no fue muy acertada. Hoy día, lo normal es instalar entre 512 y 1024 Megabytes (1 Gigabyte), casi seiscientas veces más. Pero veamos, hay que excusar al chico. Por aquel entonces los sistemas operativos no usaban demasiados gráficos (excepto los visionarios y mal vendidos en España Macintosh, que ya utilizaban un sistema parecido al Windows en los 70), con lo que 640k (0.6 Megas) para alojar todo el núcleo del sistema era suficiente. En realidad, para lo que es el núcleo del sistema operativo, y sólo el núcleo, nada de herramientas, 640k de RAM era aceptable. Con la capacidad de los programas y sistemas de devorar cada vez más recursos, los 640k se hicieron insuficientes enseguida, por ejemplo para usar el Windows 3.1. Esto produjo todo un maremágnum de confusión motivado por la voluntad de mantener la compatibilidad hacia abajo (que todos los programas anteriores pudiesen ser ejecutados en ordenadores modernos) y realizar verdaderos malabares con la memoria (memoria extendida, expandida, memoria base…) afortunadamente, con Windows 2000 y XP, se abandonó la base MS-DOS y con ella, esta anticuada filosofía (aunque muchos antiguos programas, aún pudiesen ser ejecutados). Windows 95 no era más que una bonita interfaz gráfica que ocultaba un MS-DOS interno.
También hay que tener en cuenta que nuestro amigo Bill tenía y tiene un acuerdo con Intel, en el que Microsoft programa aplicaciones que absorben cada vez más CPU y así Intel puede sacar cada 18 meses un procesador más potente y tiene asegurada la clientela que use Windows. Por eso, la mayoría de las veces, los recursos que toman los sistemas Windows son injustificados, no son más que una argucia para que Intel dé salida a sus procesadores más potentes a personas que realmente no los necesitan (por supuesto que existen profesionales con la demanda de procesadores de alta gama, pero para un usuario medio que no le guste demasiado jugar ni sea profesional, 3 Ghz es una bestialidad y sólo sirve para que Windows XP campe a sus anchas, para ellos, se podrían reciclar viejos sistemas con Linux).
Volvamos a la memoria. Random Access Memory (Memoria de acceso aleatorio). Lo de aleatorio no viene de que se acceda sin orden ni concierto a la información que le venga en gana. Aleatorio significa que puede acceder a cualquier dato almacenado en ella con la misma velocidad. En los discos duros, el lugar físico donde se encuentre la información (ya sea más cerca del centro del disco o más hacia los bordes) influye en el tiempo que tarda el brazo mecánico en tomar esos datos. En el caso de la RAM, esta memoria está constituida como una malla entrelazada en la que cada celda contiene un estado (los ya consabidos “0″ o “1″, cargado o no cargado, señal eléctrica o ausencia de señal). Los datos son accesibles por coordenadas que identifican cada fila y cada columna. Para acceder a un rango concreto (por ejemplo toda una fila), sólo hay que indicar la coordenada “Y”, y obtendremos el conjunto de bytes que están alojados en ella, con lo que el procesador podrá empezar a trabajar. El proceso es el siguiente: El usuario ejecuta una aplicación en el disco duro (demasiado lento para trabajar con él), esta viaja por el bus hacia la memoria RAM (que posee la velocidad adecuada para trabajar rápidamente con datos), aquí se mantiene de forma volátil hasta que el usuario almacena la información, que vuelve a pasar al disco duro. Todo esto es controlado por el microprocesador y los chips de la placa. Así de “simple” es la estructura básica de la computación.
Hagamos un poco de historiaENIAC, considerado el primer ordenador de la Historia, poseía unos increíbles 4 kilobytes de memoria, fabricados a base de núcleos de ferrita a gran temperatura. Estos 4 kilobytes (si cada carácter en un documento ocupara un byte, el ordenador podría almacenar poco más que un folio escrito de información) ocupaban varios metros cuadrados, como cuatro armarios juntos. En los sesenta, cuando se comienza a utilizar los chips gracias a los circuitos integrados, se da un gran paso adelante, y los procesadores comienzan a doblar su capacidad cada año y medio. No así la RAM que debe esperar unos diez años para duplicar su velocidad. En los ochenta, el micro sigue evolucionando a velocidades sorprendentes (se llega al Megaherzio) y la velocidad de acceso a RAM sigue estancada hasta quedarse por detrás del micro. Surge el concepto de multiplicador para poder seguir al micro, y a la vez todo el sistema debe acoplarse a la velocidad del bus, que, para entendernos, es la carretera que une el procesador con la RAM. El bus siempre ha viajado a una velocidad menor que el procesador y la RAM, y esto ha generado infinidad de trucos y mejoras para poder crear un sistema sin cuellos de botella… Unos ejemplos:
Existen dos tipos básicos de memoria RAM, la estática (SRAM) y la dinámica (DRAM). La primera no necesita ser tan frecuentemente “refrescada” con la información, lo que la hace más rápida. Se usa para las cachés internas de los microprocesadores (que no necesitan pasar por el bus), mientras que la dinámica se utiliza para lo que comúnmente conocemos como RAM del ordenador. SDRAM, viene de DRAM síncrona, y es un tipo genérico de memoria optimizada para trabajar a la velocidad del bus. ¿Confundidos? Aún ni hemos empezado.
Según el formato e interacción con la placa…
En un principio se usaron memorias DIP (Dual In line Pin) hasta los procesadores 80386, que soportaban poco más de 1 Megabyte de memoria. Eran una especie de cucaracha rectangular con 16 patas. Con el tiempo este formato pasó a usarse para la memoria de la tarjeta gráfica, pero con el aumento de ésta, el tipo de conexión terminó despareciendo.
A mediados de los 90, aparecieron los formatos DIMM, SIMM (dual/single in line memory module) que eran módulos dispuestos en una lámina que se unía a la placa a través de una serie de contactos. Visualmente, estos dos tipos de módulos eran muy parecidos, pero para conectarse a la placa, necesitaban de técnicas distintas. Estos módulos podían ser a su vez de 30 contactos (SIMM30), muy al principio. Con la aparición del 486 y hasta las primeras versiones de Pentium II, se aumentó a 72 contactos. La evolución llegó con los módulos DIMM de 168 contactos, más rápidos que los anteriores, que se mantuvo hasta que el bus de datos consiguió disparar su velocidad.
La mayoría de los equipos personales que se instalan actualmente, vienen equipados con memoria del tipo DDR SDRAM (double data rate SDRAM) que consigue doblar la velocidad actuando casi dos veces por ciclo de la placa, ajustándose más a la disparatada velocidad de los microprocesadores de hoy en día, y doblando velocidad de acceso de un plumazo cuando comenzaron a comercializarse.
Para seguir con detenimiento la historia de la RAM y sus posibilidades, acrónimos y vertientes, se necesitaría un libro entero (que los hay). Pero con estas pinceladas, podemos, al menos, hablar con cierta propiedad sobre un componente muy importante de nuestro sistema.
Como veis, su visión del crecimiento desorbitado de la informática no fue muy acertada. Hoy día, lo normal es instalar entre 512 y 1024 Megabytes (1 Gigabyte), casi seiscientas veces más. Pero veamos, hay que excusar al chico. Por aquel entonces los sistemas operativos no usaban demasiados gráficos (excepto los visionarios y mal vendidos en España Macintosh, que ya utilizaban un sistema parecido al Windows en los 70), con lo que 640k (0.6 Megas) para alojar todo el núcleo del sistema era suficiente. En realidad, para lo que es el núcleo del sistema operativo, y sólo el núcleo, nada de herramientas, 640k de RAM era aceptable. Con la capacidad de los programas y sistemas de devorar cada vez más recursos, los 640k se hicieron insuficientes enseguida, por ejemplo para usar el Windows 3.1. Esto produjo todo un maremágnum de confusión motivado por la voluntad de mantener la compatibilidad hacia abajo (que todos los programas anteriores pudiesen ser ejecutados en ordenadores modernos) y realizar verdaderos malabares con la memoria (memoria extendida, expandida, memoria base…) afortunadamente, con Windows 2000 y XP, se abandonó la base MS-DOS y con ella, esta anticuada filosofía (aunque muchos antiguos programas, aún pudiesen ser ejecutados). Windows 95 no era más que una bonita interfaz gráfica que ocultaba un MS-DOS interno.
También hay que tener en cuenta que nuestro amigo Bill tenía y tiene un acuerdo con Intel, en el que Microsoft programa aplicaciones que absorben cada vez más CPU y así Intel puede sacar cada 18 meses un procesador más potente y tiene asegurada la clientela que use Windows. Por eso, la mayoría de las veces, los recursos que toman los sistemas Windows son injustificados, no son más que una argucia para que Intel dé salida a sus procesadores más potentes a personas que realmente no los necesitan (por supuesto que existen profesionales con la demanda de procesadores de alta gama, pero para un usuario medio que no le guste demasiado jugar ni sea profesional, 3 Ghz es una bestialidad y sólo sirve para que Windows XP campe a sus anchas, para ellos, se podrían reciclar viejos sistemas con Linux).
Volvamos a la memoria. Random Access Memory (Memoria de acceso aleatorio). Lo de aleatorio no viene de que se acceda sin orden ni concierto a la información que le venga en gana. Aleatorio significa que puede acceder a cualquier dato almacenado en ella con la misma velocidad. En los discos duros, el lugar físico donde se encuentre la información (ya sea más cerca del centro del disco o más hacia los bordes) influye en el tiempo que tarda el brazo mecánico en tomar esos datos. En el caso de la RAM, esta memoria está constituida como una malla entrelazada en la que cada celda contiene un estado (los ya consabidos “0″ o “1″, cargado o no cargado, señal eléctrica o ausencia de señal). Los datos son accesibles por coordenadas que identifican cada fila y cada columna. Para acceder a un rango concreto (por ejemplo toda una fila), sólo hay que indicar la coordenada “Y”, y obtendremos el conjunto de bytes que están alojados en ella, con lo que el procesador podrá empezar a trabajar. El proceso es el siguiente: El usuario ejecuta una aplicación en el disco duro (demasiado lento para trabajar con él), esta viaja por el bus hacia la memoria RAM (que posee la velocidad adecuada para trabajar rápidamente con datos), aquí se mantiene de forma volátil hasta que el usuario almacena la información, que vuelve a pasar al disco duro. Todo esto es controlado por el microprocesador y los chips de la placa. Así de “simple” es la estructura básica de la computación.
Hagamos un poco de historiaENIAC, considerado el primer ordenador de la Historia, poseía unos increíbles 4 kilobytes de memoria, fabricados a base de núcleos de ferrita a gran temperatura. Estos 4 kilobytes (si cada carácter en un documento ocupara un byte, el ordenador podría almacenar poco más que un folio escrito de información) ocupaban varios metros cuadrados, como cuatro armarios juntos. En los sesenta, cuando se comienza a utilizar los chips gracias a los circuitos integrados, se da un gran paso adelante, y los procesadores comienzan a doblar su capacidad cada año y medio. No así la RAM que debe esperar unos diez años para duplicar su velocidad. En los ochenta, el micro sigue evolucionando a velocidades sorprendentes (se llega al Megaherzio) y la velocidad de acceso a RAM sigue estancada hasta quedarse por detrás del micro. Surge el concepto de multiplicador para poder seguir al micro, y a la vez todo el sistema debe acoplarse a la velocidad del bus, que, para entendernos, es la carretera que une el procesador con la RAM. El bus siempre ha viajado a una velocidad menor que el procesador y la RAM, y esto ha generado infinidad de trucos y mejoras para poder crear un sistema sin cuellos de botella… Unos ejemplos:
Existen dos tipos básicos de memoria RAM, la estática (SRAM) y la dinámica (DRAM). La primera no necesita ser tan frecuentemente “refrescada” con la información, lo que la hace más rápida. Se usa para las cachés internas de los microprocesadores (que no necesitan pasar por el bus), mientras que la dinámica se utiliza para lo que comúnmente conocemos como RAM del ordenador. SDRAM, viene de DRAM síncrona, y es un tipo genérico de memoria optimizada para trabajar a la velocidad del bus. ¿Confundidos? Aún ni hemos empezado.
Según el formato e interacción con la placa…
En un principio se usaron memorias DIP (Dual In line Pin) hasta los procesadores 80386, que soportaban poco más de 1 Megabyte de memoria. Eran una especie de cucaracha rectangular con 16 patas. Con el tiempo este formato pasó a usarse para la memoria de la tarjeta gráfica, pero con el aumento de ésta, el tipo de conexión terminó despareciendo.
A mediados de los 90, aparecieron los formatos DIMM, SIMM (dual/single in line memory module) que eran módulos dispuestos en una lámina que se unía a la placa a través de una serie de contactos. Visualmente, estos dos tipos de módulos eran muy parecidos, pero para conectarse a la placa, necesitaban de técnicas distintas. Estos módulos podían ser a su vez de 30 contactos (SIMM30), muy al principio. Con la aparición del 486 y hasta las primeras versiones de Pentium II, se aumentó a 72 contactos. La evolución llegó con los módulos DIMM de 168 contactos, más rápidos que los anteriores, que se mantuvo hasta que el bus de datos consiguió disparar su velocidad.
La mayoría de los equipos personales que se instalan actualmente, vienen equipados con memoria del tipo DDR SDRAM (double data rate SDRAM) que consigue doblar la velocidad actuando casi dos veces por ciclo de la placa, ajustándose más a la disparatada velocidad de los microprocesadores de hoy en día, y doblando velocidad de acceso de un plumazo cuando comenzaron a comercializarse.
Para seguir con detenimiento la historia de la RAM y sus posibilidades, acrónimos y vertientes, se necesitaría un libro entero (que los hay). Pero con estas pinceladas, podemos, al menos, hablar con cierta propiedad sobre un componente muy importante de nuestro sistema.
EL MOUSE
A inicios de los años 60, la Oficina de Investigación Científica de la Fuerza Aérea(AFOSR por sus siglas en inglés) adjudica la contratación del Dr. Doug Engelbart del Instituto de Investigación de Stanford(SRI Stanford Research Institute) por sus investigaciones sobre cómo aumentar el intelecto humano y el potencial de las computadoras para asistir a las personas en la toma de decisiones complejas.
Con la combinación de soporte económico de AFOSR y SRI , el Dr. Engelbart tuvo la posibilidad de desarrollar su investigación a tiempo completo y produjo un reporte titulado: "Augmenting Human Intellect: A Conceptual Framework.". El reporte, publicado en 1962, sirvió como guía en el desarrollo de tecnologías de computación.
El Dr. Engelbart consideraba que la complejidad de los problemas enfrentados por el ser humano habían crecido más rápido que la habilidad para resolverlos. Él visualizó la resolución de los problemas utilizando estaciones de trabajo asistidas por computadores para aumentar la toma de desiciones(el trabajo en red de hoy). Los seres humanos incluso deberían adquirir la habilidad de interactuar con la información proyectada usando algún dispositivo para mover un cursor o apuntador en la pantalla.
En su reporte, Engelbart proporcionó al lector de una comprensión futurística de la era de la computación. Él tuvo la visión de desarrollar un dispositivo auxiliar que cumpla con estos objetivos, el trabajar con información en una pantalla a través de él. Es así que desarrolló el prototipo del mouse de computadora. Inicialmente una caja de madera con cilindros rotatorios en la base para moverse en la pantalla y con un botón para ejecutar acciones.
El mouse, inventado por Douglas Engelbart en el Stanford Research center en 1963, e impulsado por Xerox en 1970, es uno de los más grandes inventos en la ergonomía de computadoras porque eso libra a los usuarios de la gran proporción de uso de teclado.
Particularmente, el mouse es importante para la interfaz gráfica de usuario porque uno puede simplemente apuntar hacia opciones y objetos y hacer click en el botón del mouse. Tales aplicaciones se las llama programas point-and-click (apuntar y hacer click). El mouse es también útil para programas gráficos que permiten hacer dibujos usándolo como una pluma, lápiz o pincel.
Es un dispositivo que controla el movimiento del cursor o apunta en una pantalla. Un mouse es un objeto pequeño que se puede rodar a lo largo de una superficie sólida y plana. Su nombre se deriva de su forma que se parece un poco a un ratón siendo la cola el cable que se conecta con la computadora. Como uno mueve el mouse el apuntador en la pantalla se mueve a la misma dirección. El mouse contiene por lo menos un botón y muchas veces hasta tres, que tienen diferentes funcionalidades dependiendo de que programa esté utilizando. Algunos nuevos ratones también incluyen una rueda de desplazamiento para desplazarse en documentos largos.
El mouse que ha quedado como estandar en la industria ha sido el de dos botones principalmente, el izquierdo para ejecutar o seleccionar opciones y el derecho que sirve como acceso directo a un menú dependiendo de la aplicación en que se encuentre. El botón derecho se creó para mejorar la velocidad de los accesos a opciones de la computadora.
Por ejemplo en el copiar y pegar: 1. Selecciona el texto a copiar2. Da clickderecho y selecciona copiar3. Para pegar da clickderecho en el lugar donde quiera que se agregue ese texto copiado y selecciona la opción pegar
Es decir el usuario se evita el desplazamiento hacia el menú para realizar estas acciones, ahorrando un 25% del tiempo en la ejecución de esta acción.
A inicios de los años 60, la Oficina de Investigación Científica de la Fuerza Aérea(AFOSR por sus siglas en inglés) adjudica la contratación del Dr. Doug Engelbart del Instituto de Investigación de Stanford(SRI Stanford Research Institute) por sus investigaciones sobre cómo aumentar el intelecto humano y el potencial de las computadoras para asistir a las personas en la toma de decisiones complejas.
Con la combinación de soporte económico de AFOSR y SRI , el Dr. Engelbart tuvo la posibilidad de desarrollar su investigación a tiempo completo y produjo un reporte titulado: "Augmenting Human Intellect: A Conceptual Framework.". El reporte, publicado en 1962, sirvió como guía en el desarrollo de tecnologías de computación.
El Dr. Engelbart consideraba que la complejidad de los problemas enfrentados por el ser humano habían crecido más rápido que la habilidad para resolverlos. Él visualizó la resolución de los problemas utilizando estaciones de trabajo asistidas por computadores para aumentar la toma de desiciones(el trabajo en red de hoy). Los seres humanos incluso deberían adquirir la habilidad de interactuar con la información proyectada usando algún dispositivo para mover un cursor o apuntador en la pantalla.
En su reporte, Engelbart proporcionó al lector de una comprensión futurística de la era de la computación. Él tuvo la visión de desarrollar un dispositivo auxiliar que cumpla con estos objetivos, el trabajar con información en una pantalla a través de él. Es así que desarrolló el prototipo del mouse de computadora. Inicialmente una caja de madera con cilindros rotatorios en la base para moverse en la pantalla y con un botón para ejecutar acciones.
El mouse, inventado por Douglas Engelbart en el Stanford Research center en 1963, e impulsado por Xerox en 1970, es uno de los más grandes inventos en la ergonomía de computadoras porque eso libra a los usuarios de la gran proporción de uso de teclado.
Particularmente, el mouse es importante para la interfaz gráfica de usuario porque uno puede simplemente apuntar hacia opciones y objetos y hacer click en el botón del mouse. Tales aplicaciones se las llama programas point-and-click (apuntar y hacer click). El mouse es también útil para programas gráficos que permiten hacer dibujos usándolo como una pluma, lápiz o pincel.
Es un dispositivo que controla el movimiento del cursor o apunta en una pantalla. Un mouse es un objeto pequeño que se puede rodar a lo largo de una superficie sólida y plana. Su nombre se deriva de su forma que se parece un poco a un ratón siendo la cola el cable que se conecta con la computadora. Como uno mueve el mouse el apuntador en la pantalla se mueve a la misma dirección. El mouse contiene por lo menos un botón y muchas veces hasta tres, que tienen diferentes funcionalidades dependiendo de que programa esté utilizando. Algunos nuevos ratones también incluyen una rueda de desplazamiento para desplazarse en documentos largos.
El mouse que ha quedado como estandar en la industria ha sido el de dos botones principalmente, el izquierdo para ejecutar o seleccionar opciones y el derecho que sirve como acceso directo a un menú dependiendo de la aplicación en que se encuentre. El botón derecho se creó para mejorar la velocidad de los accesos a opciones de la computadora.
Por ejemplo en el copiar y pegar: 1. Selecciona el texto a copiar2. Da clickderecho y selecciona copiar3. Para pegar da clickderecho en el lugar donde quiera que se agregue ese texto copiado y selecciona la opción pegar
Es decir el usuario se evita el desplazamiento hacia el menú para realizar estas acciones, ahorrando un 25% del tiempo en la ejecución de esta acción.
EL TECLADO
Las computadoras son muy usadas en este tiempo, y para algunos forma parte de su vida, y al utilizarla usamos el teclado... y surgen varias preguntas en cuanto al teclado, por ejemplo: ¿Quién fue el que ordenó así las letras del alfabeto? ¿Por que no las ordenaron de maner alfabética?Normalmente usamos el teclado QWERTY, llamado asi, debido al orden del las letras.
Pero primero recordemos que antes de que surgieran o fueran siquiera inventadas las computadoras y las máquinas de escribir electricas, se utilizaban las mecánicas, que se comenzaron a conocer durante la primera mitad del siglo XIX. Fue en 1872 cuando se lanza la primera máquina de escribir ampliamente conocida, diseñada por Cristopher Latham Sholes en Milwakee, Estados Unidos, con la ayuda de dos amigos inventores.
El artefacto contaba con las teclas ordenadas en orden alfabético, pero surgió un gran problema. Estas máquinas funcionaban mediante martillos con el inverso de las letras grabadas en su cabeza. Al golpear un tipo de papel a través de una cinta con tinta se marcaba la letra. El problema era que el movimiento de las teclas empujado por la presión de los dedos causaba frecuentes choques de las palancas, con lo que las primeras máquinas se trababan con mucha frecuencia.
Latham trató de mejorar el diseño de la máquina para eliminar este problema. Para ello, alteró el orden de las teclas con el fin de separar los tipos que se usaban juntos con más frecuencia. Para eso hizó un estudio de frecuencia de pares de letras, es decir, los pares que más se utilizaban (en inglés) y que, por consecuencia, causaban la mayoría de los choques. El resultado fue el orden QWERTY, el cual todos conocemos actualmente, aunque no terminó totalmente con el problema, si logró reducirlo.
El teclado que diseñó Cristopher Latham se mantuvo con los modelos que surgieron después, y se difundió por todo el mundo de tal manera, que cuando surgieron las máquinas de escribir eléctricas y luego los teclados para computadoras, el teclado QWERTY continuó reinando.
Aunque este orden no es el mejor, es tan popular que se ha convertido en el estándar de facto.De todos modos, en 1932 un capitán de submarinos e inventor llamado Dvorak diseñó una disposición del teclado que permite escribir más rápidamente. En ese teclado las vocales estan en el centro a la izquierda y las consonantes mas usadas a la derecha. Esto hace que la escritura en ese teclado sea más simple y descansada.
Aunque fue bien recibido por los expertos y se reconocieron las ventajas del teclado Dvorak, la difusión del teclado QWERTY ha hecho casi imposible el cambio.
Las computadoras son muy usadas en este tiempo, y para algunos forma parte de su vida, y al utilizarla usamos el teclado... y surgen varias preguntas en cuanto al teclado, por ejemplo: ¿Quién fue el que ordenó así las letras del alfabeto? ¿Por que no las ordenaron de maner alfabética?Normalmente usamos el teclado QWERTY, llamado asi, debido al orden del las letras.
Pero primero recordemos que antes de que surgieran o fueran siquiera inventadas las computadoras y las máquinas de escribir electricas, se utilizaban las mecánicas, que se comenzaron a conocer durante la primera mitad del siglo XIX. Fue en 1872 cuando se lanza la primera máquina de escribir ampliamente conocida, diseñada por Cristopher Latham Sholes en Milwakee, Estados Unidos, con la ayuda de dos amigos inventores.
El artefacto contaba con las teclas ordenadas en orden alfabético, pero surgió un gran problema. Estas máquinas funcionaban mediante martillos con el inverso de las letras grabadas en su cabeza. Al golpear un tipo de papel a través de una cinta con tinta se marcaba la letra. El problema era que el movimiento de las teclas empujado por la presión de los dedos causaba frecuentes choques de las palancas, con lo que las primeras máquinas se trababan con mucha frecuencia.
Latham trató de mejorar el diseño de la máquina para eliminar este problema. Para ello, alteró el orden de las teclas con el fin de separar los tipos que se usaban juntos con más frecuencia. Para eso hizó un estudio de frecuencia de pares de letras, es decir, los pares que más se utilizaban (en inglés) y que, por consecuencia, causaban la mayoría de los choques. El resultado fue el orden QWERTY, el cual todos conocemos actualmente, aunque no terminó totalmente con el problema, si logró reducirlo.
El teclado que diseñó Cristopher Latham se mantuvo con los modelos que surgieron después, y se difundió por todo el mundo de tal manera, que cuando surgieron las máquinas de escribir eléctricas y luego los teclados para computadoras, el teclado QWERTY continuó reinando.
Aunque este orden no es el mejor, es tan popular que se ha convertido en el estándar de facto.De todos modos, en 1932 un capitán de submarinos e inventor llamado Dvorak diseñó una disposición del teclado que permite escribir más rápidamente. En ese teclado las vocales estan en el centro a la izquierda y las consonantes mas usadas a la derecha. Esto hace que la escritura en ese teclado sea más simple y descansada.
Aunque fue bien recibido por los expertos y se reconocieron las ventajas del teclado Dvorak, la difusión del teclado QWERTY ha hecho casi imposible el cambio.
PANTALLA LSD
La pregunta del millón. Hasta hace poco menos de un año la respuesta era muy evidente; todo dependía del tamaño que buscásemos. Si somos de los afortunados que disponemos de espacio para cualquier pantalla sea del tamaño que sea, es el precio el que nos marcará la más grande que nos podemos permitir. Si bajo esas premisas el tamaño elegido eran las 42 pulgadas o mayor, la respuesta era el plasma. Si no podíamos permitirnos algo tan grande, deberíamos optar por el LCD.Pero no podía ser tan fácil y en el último año han aparecido pantallas LCD de 43”, 46”, 50”… así que el tamaño ya no nos condiciona. La segunda gran diferencia eran las conexiones. Los LCD desde mucho antes que los plasma contaban con conexiones digitales DVI, lo que las hacían más apropiadas para usuarios de PC. La llegada de la conexión HDMI propicia que ambas tecnologías cuenten con las mismas posibilidades de conexión, así que tampoco nos sirve.Sin condicionantes objetivos que nos dirijan a una u otra opción, tenemos que empezar a buscar otros más subjetivos, del tipo de que “se vea mejor o peor”. Decimos que son subjetivos porque dos personas ante una misma proyección en un plasma y un LCD pueden disentir sobre cuál se ve mejor. Y es que aunque las diferencias en la imagen sean evidentes, a cada cual le puede gustar una u otra.En teoría una escena sobre un LCD resulta mucho más definida, más “viva”, mientras que el plasma ofrece más contraste y una paleta de colores más natural. ResoluciónEn nuestra opinión esta es la gran baza del LCD ahora que tanto se va a hablar de alta definición. Mientras que sólo algunos plasmas de 42” alcanzan los 1024x1024, los LCD de ese tamaño se mueven ya por los 1920x1080. A comienzos de este 2006 lo más extendido son los plasmas de 1024x720 y LCD de 1366x768 pero es mucho más fácil para el cristal líquido que para el plasma seguir mejorando en este aspecto. Según nuestra opinión, es la diferencia más determinante entre ambas tecnologías.BrilloAl igual que con el contraste, no es una valor que podamos considerar del todo determinante, pero no por el hecho de que carezca de importancia, sino porque se valora de forma muy diferente de un producto a otro. Partamos de que el brillo es fundamental si queremos tener una buena visión de la pantalla con luz ambiental. Una pantalla con un bajo nivel de brillo nos obligará a apagar las luces o cerrar las persianas para verla con claridad. Cuanto más brillante sea la escena, menos influirá sobre ella la luz ambiental. El problema llega en las especificaciones de cada fabricante. Hay fabricantes que hacen las mediciones del brillo de sus pantallas con una imagen totalmente en blanco mientras que otros optan por una imagen en un gris neutro. Evidentemente, en una misma pantalla el brillo será mayor con la pantalla totalmente en blanco que en gris, pero es esta última situación la que más se acerca a las condiciones reales de uso de la pantalla.Bajo estas premisas las pantallas de plasma publicitan mayores niveles de brillo, situándolo alrededor de las 1000, 1500 candelas por metro cuadrado, mientras que un LCD medio ronda las 400 ó 500 candelas. Sin embargo si atendemos a pruebas realizadas por terceras empresas como los laboratorios VNU comprobaremos como el brillo en ambas tecnologías es muy similar, si bien sí que existe una pequeña ventaja hacia el plasma.ContrasteEn esta ocasión sí que hay una ventaja clara para el plasma y se debe a cómo funciona cada tecnología a la hora de oscurecer una parte de la escena. Mientras que en las pantallas de LCD son los cristales líquidos los que adquieren opacidad para impedir pasar la luz que “sobra” en una pantalla negra, en el plasma cada célula es “excitada” eléctricamente sólo hasta alcanzar el brillo adecuado o el negro “verdadero”. Así, el plasma reproduce cada color exacto mientras que el LCD no llega a conseguir evitar del todo el paso de la luz a través de sus cristales. Las diferencias se hacen evidentes en una secuencia oscura, con muchas tonalidades de negros y marrones. Sencillamente el negro se ve gris. Lo mismo ocurre en menor medida en el resto de colores, más naturales y exactos en el plasma.Ángulo de visiónOtra de las bazas del plasma frente al LCD. La tecnología LCD se basa en la luz que se proyecta sobre los millones de unidades de cristal líquido, mientras que el plasma es cada “célula de fósforo” la que brilla con luz propia. Esto permite que sea posible mirar un plasma desde cualquier posición y ver la imagen con todo su brillo y definición, mientras en los LCD la mejor calidad de visión se obtiene mirando de frente a la pantalla, perdiendo mínimamente definición a medida que aumentamos el ángulo de visión hasta llegar casi a la perpendicular, en un ángulo de unos 160 ó 170 grados, en los que ya no vemos nada. Este problema es realmente importante en los retroproyectores (aunque no en los nuevos DLP) pero en el LCD pierde casi toda su importancia para cualquiera que ponga su pantalla en una ubicación “normal”.Esta forma de generar la imagen también crea otra pequeña ventaja a favor del plasma. En estas pantallas la luminosidad de toda la pantalla es prácticamente la misma, mientras que en las LCD hay una mayor luminosidad en el centro de la pantalla que se va perdiendo a medida que nos vamos alejando hacia los bordes de la misma.Tiempo de respuestaEl tiempo de respuesta se refiere al tiempo que tarda un píxel en pasar del color negro al blanco y seguidamente otra vez al negro. Este tiempo, demasiado alto al principio, fue el causante de que los monitores TFT y LCD de PC no fuesen recomendables para su uso con juegos o películas. Al tardar los píxeles “demasiado” tiempo en cambiar de color se producían efectos de estelas y emborronamientos o “ghosting”. En las pantallas LCD ocurría lo mismo y de ahí que se desaconsejasen para ver películas de acción o todas aquellas donde se produjesen imágenes con movimiento muy rápido. A medida que ha pasado el tiempo los LCD prácticamente en su totalidad han alcanzado los 16 ms, con lo que el problema anterior es inapreciable. Sin embargo el plasma no llega a tener ese problema por lo que es un punto más a su favor.Como comentábamos en el apartado del brillo, a la hora de medir el tiempo de respuesta cada fabricante tiene un protocolo. Hay algunos que miden el tiempo que se tarda en pasar entre blanco y negro y otros que lo hacen entre blanco y gris. Evidentemente es más sencillo llegar al gris y volver al blanco por lo que los tiempos de respuesta son mejores.Consumo eléctricoLa tecnología usada en el plasma requiere una gran cantidad de corriente eléctrica. El gas que contiene el panel requiere ser constantemente excitado eléctricamente para mantenerse en estado de plasma y requiere aún más carga eléctrica para hacer reaccionar el fósforo que se tornará azul, rojo o verde… Si bien los consumos se han reducido con las sucesivas generaciones de plasmas, aún es un electrodoméstico con un consumo más que apreciable. El LCD se basa en una lámpara situada detrás de las celdas de cristal líquido que se mantiene encendida constantemente, pudiendo ser de bajo consumo. Un detalle muy significativo y que nos ayudará a comprobar este parámetro es el calor que desprende una pantalla de plasma encendida, inexistente en un LCD.Vida útilQuizá la mayor leyenda urbana sobre los plasmas. La gente les teme porque piensan que van a dejar de verse correctamente después de unos años de uso. Realmente sí que es así, pero ahora mismo todos los fabricantes garantizan la vida de sus pantallas más allá de las 20.000 horas de uso, siendo más habitual ver ya las 60.000 horas. Y a partir de estas horas no es que “se apaguen” sino que el desgaste del fósforo que ilumina la pantalla habrá reducido aproximadamente a la mitad el brillo de la misma. Sin embargo el LCD es una tecnología “fría”, que apenas provoca desgaste y ni siquiera tiene ese problema. De todas formas, si hablamos de 20.000 de uso lo hacemos de 11 años a una media de 5 horas diarias y, sentimos decirlo, cualquier pantalla se habrá estropeado mucho antes de que la diferencia de brillo nos invite a cambiarla. Además, no sabemos qué tipo de pantallas habrá disponibles dentro de tantos años, pero nos gustaría pensar que habrá “algo” que nos permita olvidarnos rápidamente de cualquier plasma. En todo caso, por lo que estamos viendo lo más habitual es que los plasmas “mueran” por la fuente de alimentación mucho antes de tener cualquier otro problema.Concluyendo…Hemos de partir de unos mínimos que son las conexiones digitales y la certificación HDCP. Después el tamaño que nos interesa y luego podemos prestar atención a la resolución, el brillo, el contraste y demás parámetros que hemos detallado. Una vez con la idea más aproximada posible de lo que queremos, nos plantamos en una tienda y si es posible vemos las mismas imágenes en un plasma y en un LCD. Es recomendable no dejar de ver escenas oscuras y también todo lo contrario, escenas de colores vivos y con mucho movimiento como las de los dibujos animados.
La pregunta del millón. Hasta hace poco menos de un año la respuesta era muy evidente; todo dependía del tamaño que buscásemos. Si somos de los afortunados que disponemos de espacio para cualquier pantalla sea del tamaño que sea, es el precio el que nos marcará la más grande que nos podemos permitir. Si bajo esas premisas el tamaño elegido eran las 42 pulgadas o mayor, la respuesta era el plasma. Si no podíamos permitirnos algo tan grande, deberíamos optar por el LCD.Pero no podía ser tan fácil y en el último año han aparecido pantallas LCD de 43”, 46”, 50”… así que el tamaño ya no nos condiciona. La segunda gran diferencia eran las conexiones. Los LCD desde mucho antes que los plasma contaban con conexiones digitales DVI, lo que las hacían más apropiadas para usuarios de PC. La llegada de la conexión HDMI propicia que ambas tecnologías cuenten con las mismas posibilidades de conexión, así que tampoco nos sirve.Sin condicionantes objetivos que nos dirijan a una u otra opción, tenemos que empezar a buscar otros más subjetivos, del tipo de que “se vea mejor o peor”. Decimos que son subjetivos porque dos personas ante una misma proyección en un plasma y un LCD pueden disentir sobre cuál se ve mejor. Y es que aunque las diferencias en la imagen sean evidentes, a cada cual le puede gustar una u otra.En teoría una escena sobre un LCD resulta mucho más definida, más “viva”, mientras que el plasma ofrece más contraste y una paleta de colores más natural. ResoluciónEn nuestra opinión esta es la gran baza del LCD ahora que tanto se va a hablar de alta definición. Mientras que sólo algunos plasmas de 42” alcanzan los 1024x1024, los LCD de ese tamaño se mueven ya por los 1920x1080. A comienzos de este 2006 lo más extendido son los plasmas de 1024x720 y LCD de 1366x768 pero es mucho más fácil para el cristal líquido que para el plasma seguir mejorando en este aspecto. Según nuestra opinión, es la diferencia más determinante entre ambas tecnologías.BrilloAl igual que con el contraste, no es una valor que podamos considerar del todo determinante, pero no por el hecho de que carezca de importancia, sino porque se valora de forma muy diferente de un producto a otro. Partamos de que el brillo es fundamental si queremos tener una buena visión de la pantalla con luz ambiental. Una pantalla con un bajo nivel de brillo nos obligará a apagar las luces o cerrar las persianas para verla con claridad. Cuanto más brillante sea la escena, menos influirá sobre ella la luz ambiental. El problema llega en las especificaciones de cada fabricante. Hay fabricantes que hacen las mediciones del brillo de sus pantallas con una imagen totalmente en blanco mientras que otros optan por una imagen en un gris neutro. Evidentemente, en una misma pantalla el brillo será mayor con la pantalla totalmente en blanco que en gris, pero es esta última situación la que más se acerca a las condiciones reales de uso de la pantalla.Bajo estas premisas las pantallas de plasma publicitan mayores niveles de brillo, situándolo alrededor de las 1000, 1500 candelas por metro cuadrado, mientras que un LCD medio ronda las 400 ó 500 candelas. Sin embargo si atendemos a pruebas realizadas por terceras empresas como los laboratorios VNU comprobaremos como el brillo en ambas tecnologías es muy similar, si bien sí que existe una pequeña ventaja hacia el plasma.ContrasteEn esta ocasión sí que hay una ventaja clara para el plasma y se debe a cómo funciona cada tecnología a la hora de oscurecer una parte de la escena. Mientras que en las pantallas de LCD son los cristales líquidos los que adquieren opacidad para impedir pasar la luz que “sobra” en una pantalla negra, en el plasma cada célula es “excitada” eléctricamente sólo hasta alcanzar el brillo adecuado o el negro “verdadero”. Así, el plasma reproduce cada color exacto mientras que el LCD no llega a conseguir evitar del todo el paso de la luz a través de sus cristales. Las diferencias se hacen evidentes en una secuencia oscura, con muchas tonalidades de negros y marrones. Sencillamente el negro se ve gris. Lo mismo ocurre en menor medida en el resto de colores, más naturales y exactos en el plasma.Ángulo de visiónOtra de las bazas del plasma frente al LCD. La tecnología LCD se basa en la luz que se proyecta sobre los millones de unidades de cristal líquido, mientras que el plasma es cada “célula de fósforo” la que brilla con luz propia. Esto permite que sea posible mirar un plasma desde cualquier posición y ver la imagen con todo su brillo y definición, mientras en los LCD la mejor calidad de visión se obtiene mirando de frente a la pantalla, perdiendo mínimamente definición a medida que aumentamos el ángulo de visión hasta llegar casi a la perpendicular, en un ángulo de unos 160 ó 170 grados, en los que ya no vemos nada. Este problema es realmente importante en los retroproyectores (aunque no en los nuevos DLP) pero en el LCD pierde casi toda su importancia para cualquiera que ponga su pantalla en una ubicación “normal”.Esta forma de generar la imagen también crea otra pequeña ventaja a favor del plasma. En estas pantallas la luminosidad de toda la pantalla es prácticamente la misma, mientras que en las LCD hay una mayor luminosidad en el centro de la pantalla que se va perdiendo a medida que nos vamos alejando hacia los bordes de la misma.Tiempo de respuestaEl tiempo de respuesta se refiere al tiempo que tarda un píxel en pasar del color negro al blanco y seguidamente otra vez al negro. Este tiempo, demasiado alto al principio, fue el causante de que los monitores TFT y LCD de PC no fuesen recomendables para su uso con juegos o películas. Al tardar los píxeles “demasiado” tiempo en cambiar de color se producían efectos de estelas y emborronamientos o “ghosting”. En las pantallas LCD ocurría lo mismo y de ahí que se desaconsejasen para ver películas de acción o todas aquellas donde se produjesen imágenes con movimiento muy rápido. A medida que ha pasado el tiempo los LCD prácticamente en su totalidad han alcanzado los 16 ms, con lo que el problema anterior es inapreciable. Sin embargo el plasma no llega a tener ese problema por lo que es un punto más a su favor.Como comentábamos en el apartado del brillo, a la hora de medir el tiempo de respuesta cada fabricante tiene un protocolo. Hay algunos que miden el tiempo que se tarda en pasar entre blanco y negro y otros que lo hacen entre blanco y gris. Evidentemente es más sencillo llegar al gris y volver al blanco por lo que los tiempos de respuesta son mejores.Consumo eléctricoLa tecnología usada en el plasma requiere una gran cantidad de corriente eléctrica. El gas que contiene el panel requiere ser constantemente excitado eléctricamente para mantenerse en estado de plasma y requiere aún más carga eléctrica para hacer reaccionar el fósforo que se tornará azul, rojo o verde… Si bien los consumos se han reducido con las sucesivas generaciones de plasmas, aún es un electrodoméstico con un consumo más que apreciable. El LCD se basa en una lámpara situada detrás de las celdas de cristal líquido que se mantiene encendida constantemente, pudiendo ser de bajo consumo. Un detalle muy significativo y que nos ayudará a comprobar este parámetro es el calor que desprende una pantalla de plasma encendida, inexistente en un LCD.Vida útilQuizá la mayor leyenda urbana sobre los plasmas. La gente les teme porque piensan que van a dejar de verse correctamente después de unos años de uso. Realmente sí que es así, pero ahora mismo todos los fabricantes garantizan la vida de sus pantallas más allá de las 20.000 horas de uso, siendo más habitual ver ya las 60.000 horas. Y a partir de estas horas no es que “se apaguen” sino que el desgaste del fósforo que ilumina la pantalla habrá reducido aproximadamente a la mitad el brillo de la misma. Sin embargo el LCD es una tecnología “fría”, que apenas provoca desgaste y ni siquiera tiene ese problema. De todas formas, si hablamos de 20.000 de uso lo hacemos de 11 años a una media de 5 horas diarias y, sentimos decirlo, cualquier pantalla se habrá estropeado mucho antes de que la diferencia de brillo nos invite a cambiarla. Además, no sabemos qué tipo de pantallas habrá disponibles dentro de tantos años, pero nos gustaría pensar que habrá “algo” que nos permita olvidarnos rápidamente de cualquier plasma. En todo caso, por lo que estamos viendo lo más habitual es que los plasmas “mueran” por la fuente de alimentación mucho antes de tener cualquier otro problema.Concluyendo…Hemos de partir de unos mínimos que son las conexiones digitales y la certificación HDCP. Después el tamaño que nos interesa y luego podemos prestar atención a la resolución, el brillo, el contraste y demás parámetros que hemos detallado. Una vez con la idea más aproximada posible de lo que queremos, nos plantamos en una tienda y si es posible vemos las mismas imágenes en un plasma y en un LCD. Es recomendable no dejar de ver escenas oscuras y también todo lo contrario, escenas de colores vivos y con mucho movimiento como las de los dibujos animados.
PANTALLA DE RAYOS CATODICOS
La mayoría de los monitores (pantallas de equipos) utilizan pantallas de rayos catódicos (o CRT), que son tubos de vacío de vidrio dentro de los cuales un cañón de electrones emite una corriente de electrones guiada por un campo eléctrico hacia una pantalla cubierta de pequeños elementos fosforescentes.
El cañón de electrones está compuesto por un cátodo, un electrodo metálico con carga negativa, y uno o más ánodos (electrodos con carga positiva). El cátodo emite los electrones atraídos por el ánodo. El ánodo actúa como un acelerador y concentrador de los electrones, creando una corriente de electrones dirigida a la pantalla. Un campo magnético va guiando los electrones de derecha a izquierda y de arriba hacia abajo. Se crea con dos placas electrificadas X e Y (llamadas deflectores) que envían la corriente en dirección horizontal y vertical, respectivamente.
Esta pantalla está cubierta con una capa fina de elementos fosforescentes, llamados fósforos, que emiten luz por excitación, es decir, cuando los electrones los golpean, creando de esta manera, un punto iluminado llamado píxel.
La activación del campo magnético hace que los electrones sigan un patrón de barrido, al ir de izquierda a derecha y luego bajando a la siguiente fila una vez que han llegado al final.
El ojo humano no es capaz de visualizar este barrido debido a la persistencia de la visión. Trate de mover su mano en forma ondulante delante de su pantalla para comprobar este fenómeno: ¡Verá varias manos a la vez!
Combinado con el disparo o el cese del cañón de electrones, el barrido engaña a los ojos haciéndoles creer que solamente algunos píxeles de la pantalla están iluminados.
La pantalla a color
Una pantalla en blanco y negro puede mostrar diferentes tonos (matices de gris) al variar la intensidad del flujo.
Para las pantallas a color, tres haces de electrones (provenientes de tres cátodos diferentes) impactan cada uno contra un punto con un color específico: rojo, verde y azul (RGB).
Los tres puntos de color se llaman tríada (o trío de puntos).
Los fósforos azules utilizan sulfuro de zinc, mientras que los verdes utilizan sulfuro de zinc y sulfuro de cadmio. Los rojos son difíciles de crear y están hechos de una mezcla de itrio y europio, u óxido de gadolinio.
Sin embargo, estos fósforos están tan cercanos entre sí que el ojo no logra separarlos lo suficiente como para poder diferenciarlos; ve un solo color conformado por estos tres colores. Si lo desea, pruebe volcando una pequeña gota de agua sobre el vidrio de su pantalla: la gota agrandará los fósforos y de esta manera podrá verlos.
Además, para evitar el efecto de difuminado (cuando un electrón destinado a golpear un fósforo verde, impacta en su lugar uno azul), una grilla metálica llamada máscara de sombra se coloca delante de la capa de fósforo para guiar la corriente de electrones.
Según la máscara utilizada, existen diferentes categorías de pantallas CRT:
FST-Invar (tubo cuadrado plano), cuyos fósforos son redondos. Estas pantallas utilizan una grilla denominada máscara de sombra. Proporcionan todos los colores correctos, pero en cambio, poseen la desventaja de distorsionar y oscurecer la imagen en las esquinas.
Tubos Diamondtron de Mitsubishi y Trinitron de Sony, cuyas máscaras están hechas de ranuras verticales (llamadas grilla de apertura o máscara de tensión), que permiten el paso de más electrones y por lo tanto logran producir una imagen más brillante.
Tubos Cromaclear de Nec, cuya máscara se compone de un sistema híbrido con ranuras indentadas. Ésta es, en opinión de los expertos, la mejor tecnología de las tres.
Especificaciones técnicas
Las especificaciones para pantallas CRT incluyen:
La definición: el número de píxeles que puede mostrar la pantalla. Este número generalmente se encuentra entre 640 x 480 (640 píxeles de largo, 480 píxeles de ancho) y 1600 x 1200, pero resoluciones más altas son técnicamente posibles.
El tamaño: puede calcularse al medir la diagonal de la pantalla y se expresa en pulgadas (una pulgada equivale aproximadamente a 2,54 cm). Tenga cuidado de no confundir la definición de una pantalla con su tamaño. Después de todo, una pantalla de un tamaño dado puede mostrar diferentes definiciones, aunque en general las pantallas que son más grandes en tamaño poseen una definición más alta.
El tamaño de punto: Representa la distancia que separa dos fósforos del mismo color. Cuanto más bajo sea el tamaño de punto, mejor será la calidad de la imagen. Un tamaño de punto igual o inferior a 0,25 mm será más cómodo de utilizar, mientras que se recomienda evitar las pantallas con un tamaño de punto igual o superior a 0,28 mm.
Laresolución: determina el número de píxeles por unidad de superficie (dada en pulgadas lineales). Se abrevia DPI que significa Puntos por pulgada. Una resolución de 300 dpi significa 300 columnas y 300 filas de píxeles por pulgada cuadrada, lo que significa que hay 90.000 píxeles por pulgada cuadrada. En comparación, una resolución de 72 dpi significa que un píxel es 1"/72 (una pulgada dividida por 72) o 0,353 mm, lo que corresponde a una pica (una unidad tipográfica). Los términos "resolución" y "definición" habitualmente se suelen confundir en el medio.
La frecuencia de actualización: representa la cantidad de imágenes mostradas por segundo o más precisamente la cantidad de veces que la imagen se actualiza por segundo. También se denomina frecuencia de actualización vertical y se expresa en Hertz. Cuanto más alto sea este valor, mejor será la visualización (la imagen no parece titilar), de modo que debe ser superior a 67 Hz (con cualquier valor inferior la imagen parece "parpadear"). La mayoría de las personas no nota el efecto de inestabilidad de la imagen a 70 Hz o más, de modo que un valor igual o superior a 75 Hz es generalmente adecuado.
La mayoría de los monitores (pantallas de equipos) utilizan pantallas de rayos catódicos (o CRT), que son tubos de vacío de vidrio dentro de los cuales un cañón de electrones emite una corriente de electrones guiada por un campo eléctrico hacia una pantalla cubierta de pequeños elementos fosforescentes.
El cañón de electrones está compuesto por un cátodo, un electrodo metálico con carga negativa, y uno o más ánodos (electrodos con carga positiva). El cátodo emite los electrones atraídos por el ánodo. El ánodo actúa como un acelerador y concentrador de los electrones, creando una corriente de electrones dirigida a la pantalla. Un campo magnético va guiando los electrones de derecha a izquierda y de arriba hacia abajo. Se crea con dos placas electrificadas X e Y (llamadas deflectores) que envían la corriente en dirección horizontal y vertical, respectivamente.
Esta pantalla está cubierta con una capa fina de elementos fosforescentes, llamados fósforos, que emiten luz por excitación, es decir, cuando los electrones los golpean, creando de esta manera, un punto iluminado llamado píxel.
La activación del campo magnético hace que los electrones sigan un patrón de barrido, al ir de izquierda a derecha y luego bajando a la siguiente fila una vez que han llegado al final.
El ojo humano no es capaz de visualizar este barrido debido a la persistencia de la visión. Trate de mover su mano en forma ondulante delante de su pantalla para comprobar este fenómeno: ¡Verá varias manos a la vez!
Combinado con el disparo o el cese del cañón de electrones, el barrido engaña a los ojos haciéndoles creer que solamente algunos píxeles de la pantalla están iluminados.
La pantalla a color
Una pantalla en blanco y negro puede mostrar diferentes tonos (matices de gris) al variar la intensidad del flujo.
Para las pantallas a color, tres haces de electrones (provenientes de tres cátodos diferentes) impactan cada uno contra un punto con un color específico: rojo, verde y azul (RGB).
Los tres puntos de color se llaman tríada (o trío de puntos).
Los fósforos azules utilizan sulfuro de zinc, mientras que los verdes utilizan sulfuro de zinc y sulfuro de cadmio. Los rojos son difíciles de crear y están hechos de una mezcla de itrio y europio, u óxido de gadolinio.
Sin embargo, estos fósforos están tan cercanos entre sí que el ojo no logra separarlos lo suficiente como para poder diferenciarlos; ve un solo color conformado por estos tres colores. Si lo desea, pruebe volcando una pequeña gota de agua sobre el vidrio de su pantalla: la gota agrandará los fósforos y de esta manera podrá verlos.
Además, para evitar el efecto de difuminado (cuando un electrón destinado a golpear un fósforo verde, impacta en su lugar uno azul), una grilla metálica llamada máscara de sombra se coloca delante de la capa de fósforo para guiar la corriente de electrones.
Según la máscara utilizada, existen diferentes categorías de pantallas CRT:
FST-Invar (tubo cuadrado plano), cuyos fósforos son redondos. Estas pantallas utilizan una grilla denominada máscara de sombra. Proporcionan todos los colores correctos, pero en cambio, poseen la desventaja de distorsionar y oscurecer la imagen en las esquinas.
Tubos Diamondtron de Mitsubishi y Trinitron de Sony, cuyas máscaras están hechas de ranuras verticales (llamadas grilla de apertura o máscara de tensión), que permiten el paso de más electrones y por lo tanto logran producir una imagen más brillante.
Tubos Cromaclear de Nec, cuya máscara se compone de un sistema híbrido con ranuras indentadas. Ésta es, en opinión de los expertos, la mejor tecnología de las tres.
Especificaciones técnicas
Las especificaciones para pantallas CRT incluyen:
La definición: el número de píxeles que puede mostrar la pantalla. Este número generalmente se encuentra entre 640 x 480 (640 píxeles de largo, 480 píxeles de ancho) y 1600 x 1200, pero resoluciones más altas son técnicamente posibles.
El tamaño: puede calcularse al medir la diagonal de la pantalla y se expresa en pulgadas (una pulgada equivale aproximadamente a 2,54 cm). Tenga cuidado de no confundir la definición de una pantalla con su tamaño. Después de todo, una pantalla de un tamaño dado puede mostrar diferentes definiciones, aunque en general las pantallas que son más grandes en tamaño poseen una definición más alta.
El tamaño de punto: Representa la distancia que separa dos fósforos del mismo color. Cuanto más bajo sea el tamaño de punto, mejor será la calidad de la imagen. Un tamaño de punto igual o inferior a 0,25 mm será más cómodo de utilizar, mientras que se recomienda evitar las pantallas con un tamaño de punto igual o superior a 0,28 mm.
Laresolución: determina el número de píxeles por unidad de superficie (dada en pulgadas lineales). Se abrevia DPI que significa Puntos por pulgada. Una resolución de 300 dpi significa 300 columnas y 300 filas de píxeles por pulgada cuadrada, lo que significa que hay 90.000 píxeles por pulgada cuadrada. En comparación, una resolución de 72 dpi significa que un píxel es 1"/72 (una pulgada dividida por 72) o 0,353 mm, lo que corresponde a una pica (una unidad tipográfica). Los términos "resolución" y "definición" habitualmente se suelen confundir en el medio.
La frecuencia de actualización: representa la cantidad de imágenes mostradas por segundo o más precisamente la cantidad de veces que la imagen se actualiza por segundo. También se denomina frecuencia de actualización vertical y se expresa en Hertz. Cuanto más alto sea este valor, mejor será la visualización (la imagen no parece titilar), de modo que debe ser superior a 67 Hz (con cualquier valor inferior la imagen parece "parpadear"). La mayoría de las personas no nota el efecto de inestabilidad de la imagen a 70 Hz o más, de modo que un valor igual o superior a 75 Hz es generalmente adecuado.
“Historia y evolución de la computación”
La Pascalina
De las nuevas condiciones de vida impulsadas por la sociedad burguesa y el desarrollo del capitalismo, las relaciones comerciales entre naciones, que cada día eran más complejas, nace la necesidad de disponer de instrumentos cómodos y rápidos, capaces de resolver los complicados cálculos aritméticos de la época.
Un joven francés de 19 años llamado Blaise Pascal construyó un mecanismo para realizar operaciones aritméticas. Fue el primer calculador lo bastante seguro como para ser lanzado comercialmente. Pascal presentó esta máquina para efectuar sumas en 1642. Esta calculadora, mejor conocida como la Pascalina, tiene una rueda que corresponde a cada potencia del 10; cada rueda tiene 10 posiciones, una por cada digito entre 0 y 9. Era una calculadora diseñada para sumar, restar y multiplicar a través de sucesivas sumas. La Pascalina se constituyó en la primera sumadora mecánica que se había creado hasta entonces. En su honor, existe un lenguaje de programación con su nombre.
Máquina de Leibnitz
El siguiente gran paso en el perfeccionamiento de las máquinas calculadoras lo dio el 1671 el matemático alemán Gottfried Wilheim Leibnitz. Los elementos claves en la máquina de Leibnitz eran los cilindros escalonados. Esta máquina era más perfeccionada que la de Pascal, ya que podía multiplicar, dividir y obtener raíces cuadradas. Fue la mente más universal de su época. A este inventor se le atribuye el haber propuesto una máquina de calcular que utilizaba el sistema binario, todavía utilizado en nuestros días por los modernos computadores.
Cuando a comienzos del siglo XIX se construyeron las primeras máquinas de calcular comerciales construidas por Charles Xavier Thomas, se incorporaron a ellas las ruedas escalonadas de Leibnitz.
Las Tarjetas Perforadas
A finales del siglo XVIII y principios del XIX, tuvo lugar un importante hecho para el posterior desarrollo de los ordenadores: la automatización de la industria textil.
En el siglo XVIII, Francia estaba a la cabeza en la producción de tejidos elegantes y lujosos y algunos fabricantes se esforzaban por encontrar el modo de automatizar el proceso de fabricación para reducir los costos. Basil Bouda y Falcon en 1728, intentó programar el diseño del tejido por medio de fichas perforadas. De este modo, sólo determinadas agujas del telar podían atravesar los agujeros, pudiéndose conseguir así el dibujo de tejidos.
La cinta y las fichas o tarjetas perforadoras, funcionaban como un programa para el telar. Esta técnica es la que se empleaba posteriormente para la introducción de datos en los ordenadores.
No fue hasta principios del siglo XIX, en 1805, cuando otro francés Joseph Marie Jacquard, perfeccionó la técnica de controlar las agujas tejedoras del telar mediante tarjetas perforadas. Las agujas podían solamente pasar por los lugares en los que había agujeros. Colocando las fichas en forma de correa móvil, se podían tejer automáticamente complicados diseños.
Jacquard diseño en 1805 un telar que actualmente se denomina como su diseñador, con el resultado de que pocos años después aparecieron miles de telares con capacidad para reproducir perfectos dibujos a precios asequibles.
El empleo de fichas perforadas fue también una aplicación muy afortunada y avanzada de los números binarios en la programación. El 0 equivale a que no hay perforación y el 1 a que hay perforación. Por lo tanto la perforación no era más que un lenguaje que comunicaba instrucciones al telar mecánico. En los modernos ordenadores, las instrucciones básicas siguen siendo binarias, y es lo que se denomina Lenguaje de Máquina.
La Maquina Analítica y Diferencial
Los inventos citados anteriormente no pueden considerarse como máquinas automáticas, ya que estas requerían una constante intervención del operador para producir nuevos datos y/o efectuar las maniobras que implican cada operación.
La sociedad de esa época exigía una máquina para resolver cálculos automáticamente, es decir, sin la intervención del operador en el proceso, con la exactitud y precisión deseada. En 1812, el matemático e ingeniero británico Charles Babbage (1792-1881) profesor de matemáticas de la Universidad de Cambridge, preocupado por los muchos errores que contenían las tablas de cálculos que utilizaban en su trabajo diario, construyó el modelo funcional para calcular tablas denominada Máquina Diferencial (máquina de calcular logaritmos con veinte decimales).
En julio de 1823, el gobierno británico consintió en financiar la construcción de una versión mejorada de la máquina diferencial. La industria de fabricación de herramientas de aquella época, desafortunadamente no era lo suficientemente buena como para construir algunas de las partes y herramientas para fabricar sus piezas, lo que retardó considerablemente el proyecto. Con mucha frecuencia se excedía el presupuesto y algunas veces se detenía la producción por falta de fondos. La Máquina Diferencial no llegó a salir al mercado en versión mejorada, por tal razón en el año 1833 Babbage se propuso mejorar sustancialmente la Máquina de Diferencias, pero esta vez en la construcción de una segunda máquina, la cual bautizó con el nombre de Máquina de Diferencia y podía ser programada para evaluar el amplio intervalo de funciones diferentes.
Babbage no pudo completar ninguna de sus dos ingeniosas máquinas, ya que el gobierno británico, preocupado por la falta de progreso, le retiró la subvención económica. Tuvo que pasar un siglo para que sus ideas similares a estas fueran puestas en prácticas.
La Tabuladora y El Censo De 1890
Hacia 1887, surgió en Estados Unidos la idea del proceso automatizado de datos a causa de la urgente necesidad de confeccionar el censo de 1890. Para procesar manualmente los resultados del último censo de 1880, habían hecho falta siete largos años, y por lo tanto, se pensaba que para procesar el de 1890, serían necesarios más de diez años, debido al espectacular crecimiento de la población entre 1880 y 1890.
El gobierno de los Estados Unidos nombró en 1889 un comité para estudiar la forma de procesar los datos del censo y convocó un concurso para otorgar un contrato al mejor producto. Se presentaron tres propuestas adjudicándose el encargo con su sistema eléctrico de tabulación, ideado en 1887.
Herman Hollerith
Nació en 1860 y murió en 1929, a este se le reconoce como uno de los precursores de las computadoras más importante debido a ser el creador de un dispositivo que se utilizó hasta hace poco tiempo: Las tarjetas perforadas.
Hollerith trabajó afanosamente entre 1882 y 1889, en un equipo de tarjetas perforadas que podría usarse para el recuento del censo de 1890. Laboraba en su “máquina de censos” mientras trabajaba como instructor en el Massachusets Institut of Technology (MIT), al mismo tiempo que también estaba empleado en la oficina de patentes de Estados Unidos.
Antes de ingresar al MIT, se relacionó con el coronel John Shaw Billings, director de estadística para el censo. Billings estaba convencido de que la información sobre cada ciudadano de Estados Unidos podría registrase en una tarjeta perforada, y esto facilitaría el recuento de la información.
Herman Hollerith aplicó el principio de las tarjetas perforadas para el almacenamiento de datos que ya había utilizado Babbage. Hollerith diseñó una tarjeta perforada del tamaño de un billete de un dólar de ese tiempo. Un tamaño conveniente para almacenarlo en gabinetes de archivo. Después de muchísimas pruebas, desarrolló una máquina que podría contar 10,000 apariciones de cualquier característica que fuera codificada en las tarjetas.
La forma de procesar los datos según el sistema de Hollerith, era la siguiente:
§ § Las fichas de los datos se perforaban recogiendo la información correspondiente.
§ § Las fichas de los datos se colocaban en una máquina lectora o de tabular, y unas hileras de agujas presionaban contra ellas.
§ § Cuando una aguja pasaba a través de una perforación entraba en un recipiente de mercurio situado debajo, y cerraba un circuito, avanzando así un cuadrante correspondiente a una cuenta.
§ § Los totales acumulados en cada, categoría de información se veían directamente en los cuadrantes.
§ § Un cable eléctrico conectaba la lectora o la clasificadora y se abría la tapa de la caja correspondiente.
Se podía volver a programar la clasificadora cambiando el hilo eléctrico de los relees que abrían las tapas, y así se podían volver a agrupar los datos en subcategorías. Más tarde, las fichas se clasificaron automáticamente pero para la división en subcategorías tenían que volver a pasar por la clasificadora.
El equipo de Hollerith derrotó a otros dos contendientes y fue escogido por el comité encargado del censo para realizar la tabulación de 1890. El equipo que Hollerith rentó al gobierno de Estados Unidos podía leer entre 50 y 80 tarjetas por minuto, y tomó poco más de dos años para considerar los 62.6 millones de habitantes de aquella época.
La IBM
Luego del éxito de Hollerith en el censo norteamericano, varias naciones incluyendo Austria, Canadá y Rusia consideraron el uso de la máquina para los censos y Hollerith comenzó a rentar su sistema. En 1896 fundó la Tabulating Machine Company.
Esta compañía se componía en sus estructura básica del financiamiento de una persona adinerada, Thomas J. Watson, Sr. quien suplía los recursos necesarios para la construcción de las máquinas tabuladoras; y del ingenio de Herman Hollerith para construir las máquinas. Con el tiempo surgieron problemas debido a que mientras Hollerith insistía en desarrollar nuevos modelos, Thomas Watson estaba más interesado en incrementar la producción del modelo existente. Estas diferencias desembocaron en la venta de los derechos de la compañía por parte de Hollerith a Thomas Watson en 1912 y este último fusionó la compañía con un consorcio naciente del cual nacería posteriormente la International Business Machine – IBM.
En 1937, se puso en marcha el programa de Seguridad Social en Estados Unidos, que fue la mayor operación de proceso de datos realizada hasta entonces. Hicieron falta 415 máquinas IBM para perforar, clasificar, verificar y archivar medio millón de personas.
La Pascalina
De las nuevas condiciones de vida impulsadas por la sociedad burguesa y el desarrollo del capitalismo, las relaciones comerciales entre naciones, que cada día eran más complejas, nace la necesidad de disponer de instrumentos cómodos y rápidos, capaces de resolver los complicados cálculos aritméticos de la época.
Un joven francés de 19 años llamado Blaise Pascal construyó un mecanismo para realizar operaciones aritméticas. Fue el primer calculador lo bastante seguro como para ser lanzado comercialmente. Pascal presentó esta máquina para efectuar sumas en 1642. Esta calculadora, mejor conocida como la Pascalina, tiene una rueda que corresponde a cada potencia del 10; cada rueda tiene 10 posiciones, una por cada digito entre 0 y 9. Era una calculadora diseñada para sumar, restar y multiplicar a través de sucesivas sumas. La Pascalina se constituyó en la primera sumadora mecánica que se había creado hasta entonces. En su honor, existe un lenguaje de programación con su nombre.
Máquina de Leibnitz
El siguiente gran paso en el perfeccionamiento de las máquinas calculadoras lo dio el 1671 el matemático alemán Gottfried Wilheim Leibnitz. Los elementos claves en la máquina de Leibnitz eran los cilindros escalonados. Esta máquina era más perfeccionada que la de Pascal, ya que podía multiplicar, dividir y obtener raíces cuadradas. Fue la mente más universal de su época. A este inventor se le atribuye el haber propuesto una máquina de calcular que utilizaba el sistema binario, todavía utilizado en nuestros días por los modernos computadores.
Cuando a comienzos del siglo XIX se construyeron las primeras máquinas de calcular comerciales construidas por Charles Xavier Thomas, se incorporaron a ellas las ruedas escalonadas de Leibnitz.
Las Tarjetas Perforadas
A finales del siglo XVIII y principios del XIX, tuvo lugar un importante hecho para el posterior desarrollo de los ordenadores: la automatización de la industria textil.
En el siglo XVIII, Francia estaba a la cabeza en la producción de tejidos elegantes y lujosos y algunos fabricantes se esforzaban por encontrar el modo de automatizar el proceso de fabricación para reducir los costos. Basil Bouda y Falcon en 1728, intentó programar el diseño del tejido por medio de fichas perforadas. De este modo, sólo determinadas agujas del telar podían atravesar los agujeros, pudiéndose conseguir así el dibujo de tejidos.
La cinta y las fichas o tarjetas perforadoras, funcionaban como un programa para el telar. Esta técnica es la que se empleaba posteriormente para la introducción de datos en los ordenadores.
No fue hasta principios del siglo XIX, en 1805, cuando otro francés Joseph Marie Jacquard, perfeccionó la técnica de controlar las agujas tejedoras del telar mediante tarjetas perforadas. Las agujas podían solamente pasar por los lugares en los que había agujeros. Colocando las fichas en forma de correa móvil, se podían tejer automáticamente complicados diseños.
Jacquard diseño en 1805 un telar que actualmente se denomina como su diseñador, con el resultado de que pocos años después aparecieron miles de telares con capacidad para reproducir perfectos dibujos a precios asequibles.
El empleo de fichas perforadas fue también una aplicación muy afortunada y avanzada de los números binarios en la programación. El 0 equivale a que no hay perforación y el 1 a que hay perforación. Por lo tanto la perforación no era más que un lenguaje que comunicaba instrucciones al telar mecánico. En los modernos ordenadores, las instrucciones básicas siguen siendo binarias, y es lo que se denomina Lenguaje de Máquina.
La Maquina Analítica y Diferencial
Los inventos citados anteriormente no pueden considerarse como máquinas automáticas, ya que estas requerían una constante intervención del operador para producir nuevos datos y/o efectuar las maniobras que implican cada operación.
La sociedad de esa época exigía una máquina para resolver cálculos automáticamente, es decir, sin la intervención del operador en el proceso, con la exactitud y precisión deseada. En 1812, el matemático e ingeniero británico Charles Babbage (1792-1881) profesor de matemáticas de la Universidad de Cambridge, preocupado por los muchos errores que contenían las tablas de cálculos que utilizaban en su trabajo diario, construyó el modelo funcional para calcular tablas denominada Máquina Diferencial (máquina de calcular logaritmos con veinte decimales).
En julio de 1823, el gobierno británico consintió en financiar la construcción de una versión mejorada de la máquina diferencial. La industria de fabricación de herramientas de aquella época, desafortunadamente no era lo suficientemente buena como para construir algunas de las partes y herramientas para fabricar sus piezas, lo que retardó considerablemente el proyecto. Con mucha frecuencia se excedía el presupuesto y algunas veces se detenía la producción por falta de fondos. La Máquina Diferencial no llegó a salir al mercado en versión mejorada, por tal razón en el año 1833 Babbage se propuso mejorar sustancialmente la Máquina de Diferencias, pero esta vez en la construcción de una segunda máquina, la cual bautizó con el nombre de Máquina de Diferencia y podía ser programada para evaluar el amplio intervalo de funciones diferentes.
Babbage no pudo completar ninguna de sus dos ingeniosas máquinas, ya que el gobierno británico, preocupado por la falta de progreso, le retiró la subvención económica. Tuvo que pasar un siglo para que sus ideas similares a estas fueran puestas en prácticas.
La Tabuladora y El Censo De 1890
Hacia 1887, surgió en Estados Unidos la idea del proceso automatizado de datos a causa de la urgente necesidad de confeccionar el censo de 1890. Para procesar manualmente los resultados del último censo de 1880, habían hecho falta siete largos años, y por lo tanto, se pensaba que para procesar el de 1890, serían necesarios más de diez años, debido al espectacular crecimiento de la población entre 1880 y 1890.
El gobierno de los Estados Unidos nombró en 1889 un comité para estudiar la forma de procesar los datos del censo y convocó un concurso para otorgar un contrato al mejor producto. Se presentaron tres propuestas adjudicándose el encargo con su sistema eléctrico de tabulación, ideado en 1887.
Herman Hollerith
Nació en 1860 y murió en 1929, a este se le reconoce como uno de los precursores de las computadoras más importante debido a ser el creador de un dispositivo que se utilizó hasta hace poco tiempo: Las tarjetas perforadas.
Hollerith trabajó afanosamente entre 1882 y 1889, en un equipo de tarjetas perforadas que podría usarse para el recuento del censo de 1890. Laboraba en su “máquina de censos” mientras trabajaba como instructor en el Massachusets Institut of Technology (MIT), al mismo tiempo que también estaba empleado en la oficina de patentes de Estados Unidos.
Antes de ingresar al MIT, se relacionó con el coronel John Shaw Billings, director de estadística para el censo. Billings estaba convencido de que la información sobre cada ciudadano de Estados Unidos podría registrase en una tarjeta perforada, y esto facilitaría el recuento de la información.
Herman Hollerith aplicó el principio de las tarjetas perforadas para el almacenamiento de datos que ya había utilizado Babbage. Hollerith diseñó una tarjeta perforada del tamaño de un billete de un dólar de ese tiempo. Un tamaño conveniente para almacenarlo en gabinetes de archivo. Después de muchísimas pruebas, desarrolló una máquina que podría contar 10,000 apariciones de cualquier característica que fuera codificada en las tarjetas.
La forma de procesar los datos según el sistema de Hollerith, era la siguiente:
§ § Las fichas de los datos se perforaban recogiendo la información correspondiente.
§ § Las fichas de los datos se colocaban en una máquina lectora o de tabular, y unas hileras de agujas presionaban contra ellas.
§ § Cuando una aguja pasaba a través de una perforación entraba en un recipiente de mercurio situado debajo, y cerraba un circuito, avanzando así un cuadrante correspondiente a una cuenta.
§ § Los totales acumulados en cada, categoría de información se veían directamente en los cuadrantes.
§ § Un cable eléctrico conectaba la lectora o la clasificadora y se abría la tapa de la caja correspondiente.
Se podía volver a programar la clasificadora cambiando el hilo eléctrico de los relees que abrían las tapas, y así se podían volver a agrupar los datos en subcategorías. Más tarde, las fichas se clasificaron automáticamente pero para la división en subcategorías tenían que volver a pasar por la clasificadora.
El equipo de Hollerith derrotó a otros dos contendientes y fue escogido por el comité encargado del censo para realizar la tabulación de 1890. El equipo que Hollerith rentó al gobierno de Estados Unidos podía leer entre 50 y 80 tarjetas por minuto, y tomó poco más de dos años para considerar los 62.6 millones de habitantes de aquella época.
La IBM
Luego del éxito de Hollerith en el censo norteamericano, varias naciones incluyendo Austria, Canadá y Rusia consideraron el uso de la máquina para los censos y Hollerith comenzó a rentar su sistema. En 1896 fundó la Tabulating Machine Company.
Esta compañía se componía en sus estructura básica del financiamiento de una persona adinerada, Thomas J. Watson, Sr. quien suplía los recursos necesarios para la construcción de las máquinas tabuladoras; y del ingenio de Herman Hollerith para construir las máquinas. Con el tiempo surgieron problemas debido a que mientras Hollerith insistía en desarrollar nuevos modelos, Thomas Watson estaba más interesado en incrementar la producción del modelo existente. Estas diferencias desembocaron en la venta de los derechos de la compañía por parte de Hollerith a Thomas Watson en 1912 y este último fusionó la compañía con un consorcio naciente del cual nacería posteriormente la International Business Machine – IBM.
En 1937, se puso en marcha el programa de Seguridad Social en Estados Unidos, que fue la mayor operación de proceso de datos realizada hasta entonces. Hicieron falta 415 máquinas IBM para perforar, clasificar, verificar y archivar medio millón de personas.
jueves, 6 de agosto de 2009

LA PRIMERA COMPUTADORALA VIEJA COMPUTADORAHoy cuando cuando hablamos de un PC, ordenador o conputadora es la cosa mas normal del mundo incluso podemos movernos con una debajo del brazo, o llevar nuestro trabajo a casa en un pen-draive, o incluso almacenar toda nuestra vida es un disco duro que no abulta más que un libro de bolsillo.Pero no siempre fue igual y hasta llegar a lo que hoy en día.
La primera computadora que comenzo a funcionar necesitaba un equipo de gente pendiente de ella día y noche, fue llamada ENIAC que son las siglas en inglés de Electronic Numerical Integrator And Computer (Computador e Integrador Numérico Electrónico), utilizada por el Ejercito de los EE.UU en el Laboratorio de Investigación Balística, esta máquina gigantesca también fue la primera computadora electrónica que fue totalmente digital.
Las dimensiones eran impresionantes fue construida en la Universidad de Pennsylvania por John Presper Eckert y John William Mauchly, ocupaba una superficie de 167 m² y operaba con un total de 17.468 válvulas electrónicas o tubos de vacío. Físicamente, la ENIAC tenía 17.468 tubos de vacío, 7.200 diodos de cristal, 70.000 resistencias, 10.000 condensadores y 5 millones de soldaduras.
Pesaba 27 tn, medía 2,4 m x 0,9 m x 30 m; utilizaba 1.500 conmutadores electromagnéticos; requería la operación manual de unos 6.000 interruptores, y su programa o software, cuando requería modificaciones, tardaba semanas de instalación
La ENIAC elevaba la temperatura del local a 50ºC. Para efectuar las diferentes operaciones era preciso cambiar, conectar y reconectar los cables como se hacía, en esa época, en las centrales telefónicas. Este trabajo podía demorar varios días dependiendo del cálculo a realizar.
LA PRIMERA COMPUTADORALA VIEJA COMPUTADORAHoy cuando cuando hablamos de un PC, ordenador o conputadora es la cosa mas normal del mundo incluso podemos movernos con una debajo del brazo, o llevar nuestro trabajo a casa en un pen-draive, o incluso almacenar toda nuestra vida es un disco duro que no abulta más que un libro de bolsillo.Pero no siempre fue igual y hasta llegar a lo que hoy en día.
LA PRIMERA COMPUTADORA
LA VIEJA COMPUTADORAHoy cuando cuando hablamos de un PC, ordenador o conputadora es la cosa mas normal del mundo incluso podemos movernos con una debajo del brazo, o llevar nuestro trabajo a casa en un pen-draive, o incluso almacenar toda nuestra vida es un disco duro que no abulta más que un libro de bolsillo.Pero no siempre fue igual y hasta llegar a lo que hoy en día.
LA VIEJA COMPUTADORAHoy cuando cuando hablamos de un PC, ordenador o conputadora es la cosa mas normal del mundo incluso podemos movernos con una debajo del brazo, o llevar nuestro trabajo a casa en un pen-draive, o incluso almacenar toda nuestra vida es un disco duro que no abulta más que un libro de bolsillo.Pero no siempre fue igual y hasta llegar a lo que hoy en día.
martes, 4 de agosto de 2009
LA PRIMERA COMPUTADORA
LA VIEJA COMPUTADORAHoy cuando cuando hablamos de un PC, ordenador o conputadora es la cosa mas normal del mundo incluso podemos movernos con una debajo del brazo, o llevar nuestro trabajo a casa en un pen-draive, o incluso almacenar toda nuestra vida es un disco duro que no abulta más que un libro de bolsillo.Pero no siempre fue igual y hasta llegar a lo que hoy en día.
La primera computadora que comenzo a funcionar necesitaba un equipo de gente pendiente de ella día y noche, fue llamada ENIAC que son las siglas en inglés de Electronic Numerical Integrator And Computer (Computador e Integrador Numérico Electrónico), utilizada por el Ejercito de los EE.UU en el Laboratorio de Investigación Balística, esta máquina gigantesca también fue la primera computadora electrónica que fue totalmente digital.
Las dimensiones eran impresionantes fue construida en la Universidad de Pennsylvania por John Presper Eckert y John William Mauchly, ocupaba una superficie de 167 m² y operaba con un total de 17.468 válvulas electrónicas o tubos de vacío. Físicamente, la ENIAC tenía 17.468 tubos de vacío, 7.200 diodos de cristal, 70.000 resistencias, 10.000 condensadores y 5 millones de soldaduras.
Pesaba 27 tn, medía 2,4 m x 0,9 m x 30 m; utilizaba 1.500 conmutadores electromagnéticos; requería la operación manual de unos 6.000 interruptores, y su programa o software, cuando requería modificaciones, tardaba semanas de instalación
La ENIAC elevaba la temperatura del local a 50ºC. Para efectuar las diferentes operaciones era preciso cambiar, conectar y reconectar los cables como se hacía, en esa época, en las centrales telefónicas. Este trabajo podía demorar varios días dependiendo del cálculo a realizar.
HISTORIA DE LA COMPURACION
Uno de los primeros dispositivos mecánicos para contar fue el ábaco, cuya historia se remonta a las antiguas civilizaciones griega y romana. Este dispositivo es muy sencillo, consta de cuentas ensartadas en varillas que a su vez están montadas en un marco rectangular. Al desplazar las cuentas sobre varillas, sus posiciones representan valores almacenados, y es mediante dichas posiciones que este representa y almacena datos. A este dispositivo no se le puede llamar computadora por carecer del elemento fundamental llamado programa.
Otro de los inventos mecánicos fue la Pascalina inventada por Blaise Pascal (1623 - 1662) de Francia y la de Gottfried Wilhelm von Leibniz (1646 - 1716) de Alemania. Con estas máquinas, los datos se representaban mediante las posiciones de los engranajes, y los datos se introducían manualmente estableciendo dichas posiciones finales de las ruedas, de manera similar a como leemos los números en el cuentakilómetros de un automóvil.
La primera computadora fue la máquina analítica creada por Charles Babbage, profesor matemático de la Universidad de Cambridge en el siglo XIX. La idea que tuvo Charles Babbage sobre un computador nació debido a que la elaboración de las tablas matemáticas era un proceso tedioso y propenso a errores. En 1823 el gobierno Británico lo apoyo para crear el proyecto de una máquina de diferencias, un dispositivo mecánico para efectuar sumas repetidas.
Mientras tanto Charles Jacquard (francés), fabricante de tejidos, había creado un telar que podía reproducir automáticamente patrones de tejidos leyendo la información codificada en patrones de agujeros perforados en tarjetas de papel rígido. Al enterarse de este método Babbage abandonó la máquina de diferencias y se dedico al proyecto de la máquina analítica que se pudiera programar con tarjetas perforadas para efectuar cualquier cálculo con una precisión de 20 dígitos. La tecnología de la época no bastaba para hacer realidad sus ideas.
El mundo no estaba listo, y no lo estaría por cien años más.
En 1944 se construyó en la Universidad de Harvard, la Mark I, diseñada por un equipo encabezado por Howard H. Aiken. Esta máquina no está considerada como computadora electrónica debido a que no era de propósito general y su funcionamiento estaba basado en dispositivos electromecánicos llamados relevadores.
LA VIEJA COMPUTADORAHoy cuando cuando hablamos de un PC, ordenador o conputadora es la cosa mas normal del mundo incluso podemos movernos con una debajo del brazo, o llevar nuestro trabajo a casa en un pen-draive, o incluso almacenar toda nuestra vida es un disco duro que no abulta más que un libro de bolsillo.Pero no siempre fue igual y hasta llegar a lo que hoy en día.
La primera computadora que comenzo a funcionar necesitaba un equipo de gente pendiente de ella día y noche, fue llamada ENIAC que son las siglas en inglés de Electronic Numerical Integrator And Computer (Computador e Integrador Numérico Electrónico), utilizada por el Ejercito de los EE.UU en el Laboratorio de Investigación Balística, esta máquina gigantesca también fue la primera computadora electrónica que fue totalmente digital.
Las dimensiones eran impresionantes fue construida en la Universidad de Pennsylvania por John Presper Eckert y John William Mauchly, ocupaba una superficie de 167 m² y operaba con un total de 17.468 válvulas electrónicas o tubos de vacío. Físicamente, la ENIAC tenía 17.468 tubos de vacío, 7.200 diodos de cristal, 70.000 resistencias, 10.000 condensadores y 5 millones de soldaduras.
Pesaba 27 tn, medía 2,4 m x 0,9 m x 30 m; utilizaba 1.500 conmutadores electromagnéticos; requería la operación manual de unos 6.000 interruptores, y su programa o software, cuando requería modificaciones, tardaba semanas de instalación
La ENIAC elevaba la temperatura del local a 50ºC. Para efectuar las diferentes operaciones era preciso cambiar, conectar y reconectar los cables como se hacía, en esa época, en las centrales telefónicas. Este trabajo podía demorar varios días dependiendo del cálculo a realizar.
HISTORIA DE LA COMPURACION
Uno de los primeros dispositivos mecánicos para contar fue el ábaco, cuya historia se remonta a las antiguas civilizaciones griega y romana. Este dispositivo es muy sencillo, consta de cuentas ensartadas en varillas que a su vez están montadas en un marco rectangular. Al desplazar las cuentas sobre varillas, sus posiciones representan valores almacenados, y es mediante dichas posiciones que este representa y almacena datos. A este dispositivo no se le puede llamar computadora por carecer del elemento fundamental llamado programa.
Otro de los inventos mecánicos fue la Pascalina inventada por Blaise Pascal (1623 - 1662) de Francia y la de Gottfried Wilhelm von Leibniz (1646 - 1716) de Alemania. Con estas máquinas, los datos se representaban mediante las posiciones de los engranajes, y los datos se introducían manualmente estableciendo dichas posiciones finales de las ruedas, de manera similar a como leemos los números en el cuentakilómetros de un automóvil.
La primera computadora fue la máquina analítica creada por Charles Babbage, profesor matemático de la Universidad de Cambridge en el siglo XIX. La idea que tuvo Charles Babbage sobre un computador nació debido a que la elaboración de las tablas matemáticas era un proceso tedioso y propenso a errores. En 1823 el gobierno Británico lo apoyo para crear el proyecto de una máquina de diferencias, un dispositivo mecánico para efectuar sumas repetidas.
Mientras tanto Charles Jacquard (francés), fabricante de tejidos, había creado un telar que podía reproducir automáticamente patrones de tejidos leyendo la información codificada en patrones de agujeros perforados en tarjetas de papel rígido. Al enterarse de este método Babbage abandonó la máquina de diferencias y se dedico al proyecto de la máquina analítica que se pudiera programar con tarjetas perforadas para efectuar cualquier cálculo con una precisión de 20 dígitos. La tecnología de la época no bastaba para hacer realidad sus ideas.
El mundo no estaba listo, y no lo estaría por cien años más.
En 1944 se construyó en la Universidad de Harvard, la Mark I, diseñada por un equipo encabezado por Howard H. Aiken. Esta máquina no está considerada como computadora electrónica debido a que no era de propósito general y su funcionamiento estaba basado en dispositivos electromecánicos llamados relevadores.
lunes, 3 de agosto de 2009
LA PRIMERA COMPUTADORA
LA VIEJA COMPUTADORAHoy cuando cuando hablamos de un PC, ordenador o conputadora es la cosa mas normal del mundo incluso podemos movernos con una debajo del brazo, o llevar nuestro trabajo a casa en un pen-draive, o incluso almacenar toda nuestra vida es un disco duro que no abulta más que un libro de bolsillo.Pero no siempre fue igual y hasta llegar a lo que hoy en día.
Suscribirse a:
Entradas (Atom)